Sekundarstufe II

Lehrplan Physik Städt. Röntgen-Gymnasium

Inhalt

Überblick über die Unterrichtsvorhaben	3
Einführungsphase	3
Qualifikationsphase 1 (Grundkurs)	4
Qualifikationsphase 2 (Grundkurs)	5
Qualifikationsphase 1 (Leistungskurs)	6
Qualifikationsphase 2 (Leistungskurs)	8
Konkretisierte Unterrichtsvorhaben für die Einführungsphase	10
Inhaltsfeld: Mechanik	10
Konkretisierte Unterrichtsvorhaben für die Qualifikationsphase 1 (Grundkurs)	19
Inhaltsfeld: Quantenobjekte	19
Inhaltsfeld: Elektrodynamik	25
Konkretisierte Unterrichtsvorhaben für die Qualifikationsphase 2 (Grundkurs)	30
Inhaltsfeld: Strahlung und Materie	30
Inhaltsfeld: Relativität von Raum und Zeit (GK)	36
Konkretisierte Unterrichtsvorhaben für die Qualifikationsphase 1 (Leistungskurs)	40
Inhaltsfeld: Relativitätstheorie	40
Inhaltsfeld: Elektrik	47
Konkretisierte Unterrichtsvorhaben für die Qualifikationsphase 2 (Leistungskurs)	62
Inhaltsfeld: Quantenphysik	62
Inhaltsfeld: Atom-, Kern- und Elementarteilchenphysik	71
Grundsätze der fachmethodischen und fachdidaktischen Arbeit im Physikunterricht gymnasialen Oberstufe	
Grundsätze der Leistungshewertung und Leistungsrückmeldung im Fach Physik	83

Überblick über die Unterrichtsvorhaben

Einführungsphase

Kontext und Leitfrage	Inhaltsfelder, Inhaltliche Schwerpunkte	Kompetenzschwerpunkte
Physik und Sport	Mechanik	E7 Arbeits- und Denkweisen
Wie lassen sich Bewegungen vermessen und	Kräfte und Bewegungen	K4 Argumentation
analysieren?	Energie und Impuls	E5 Auswertung
		E6 Modelle
Zeitbedarf: ca. 28 UE á 67,5 Min.		UF2 Auswahl
Auf dem Weg in den Weltraum	Mechanik	UF4 Vernetzung
Wie kommt man zu physikalischen	Gravitation	E3 Hypothesen
Erkenntnissen über unser Sonnensystem?	Kräfte und Bewegungen	E6 Modelle
	Energie und Impuls	E7 Arbeits- und Denkweisen
Zeitbedarf: ca. 18 UE á 67,5 Min.		
Schall	Mechanik	E2 Wahrnehmung und Messung
Wie lässt sich Schall physikalisch untersuchen?	Schwingungen und Wellen	UF1 Wiedergabe
	Kräfte und Bewegungen	K1 Dokumentation
Zeitbedarf: ca. 6 UE á 67,5 Min.	Energie und Impuls	
Summe Einführungsphase: 80 Stunden		

Qualifikationsphase 1 (Grundkurs)

Kontext und Leitfrage	Inhaltsfelder, Inhaltliche Schwerpunkte	Kompetenzschwerpunkte	
Erforschung des Photons	Quantenobjekte	E2 Wahrnehmung und Messung	
Wie kann das Verhalten von Licht beschrieben	Photon (Wellenaspekt)	E5 Auswertung	
und erklärt werden?		K3 Präsentation	
- ''L L (
Zeitbedarf: ca. 9 UE á 67,5 Min.			
Erforschung des Elektrons	Quantenobjekte	UF1 Wiedergabe	
Wie können physikalische Eigenschaften wie die	Elektron (Teilchenaspekt)	UF3 Systematisierung	
Ladung und die Masse eines Elektrons		E5 Auswertung	
gemessen werden?		E6 Modelle	
Zeitbedarf: ca. 10 UE á 67,5 Min			
Photonen und Elektronen als Quantenobjekte	Quantenobjekte	E6 Modelle	
Kann das Verhalten von Elektronen und	Elektron und Photon (Teilchenaspekt,	E7 Arbeits- und Denkweisen	
Photonen durch ein gemeinsames Modell	Wellenaspekt)	K4 Argumentation	
beschrieben werden?	Quantenobjekte und ihre Eigenschaften	B4 Möglichkeiten und Grenzen	
Zeitbedarf: ca. 3 UE á 67,5 Min.			
Energieversorgung und Transport mit	Elektrodynamik	UF2 Auswahl	
Generatoren und Transformatoren	Spannung und elektrische Energie	UF4 Vernetzung	
Wie kann elektrische Energie gewonnen, verteilt	Induktion	E2 Wahrnehmung und Messung	
und bereitgestellt werden?	Spannungswandlung	E5 Auswertung	
		E6 Modelle	
Zeitbedarf: ca. 12 UE á 67,5 Min.		K3 Präsentation	
		B1 Kriterien	
Wirbelströme im Alltag	Elektrodynamik	UF4 Vernetzung	
Wie kann man Wirbelströme technisch nutzen?	Induktion	E5 Auswertung	
		B1 Kriterien	
Zeitbedarf: ca. 2 UE á 67,5 Min.			
Summe Qualifikationsphase (Q1) – GRUNDKURS: 56 Stunden			

Qualifikationsphase 2 (Grundkurs)

Kontext und Leitfrage	Inhaltsfelder, Inhaltliche Schwerpunkte	Kompetenzschwerpunkte	
Erforschung des Mikro- und Makrokosmos	Strahlung und Materie	UF1 Wiedergabe	
Wie gewinnt man Informationen zum Aufbau	Energiequantelung der Atomhülle	E5 Auswertung	
der Materie?	Spektrum der elektromagn. Strahlung	E2 Wahrnehmung und Messung	
Zeitbedarf: ca. 8 UE á 67,5 Min.			
Mensch und Strahlung	Strahlung und Materie	UF1 Wiedergabe	
Wie wirkt Strahlung auf den Menschen?	Kernumwandlungen	B3 Werte und Normen	
Zelihadasi sa Cilif / CZ F Mila	Ionisierende Strahlung	B4 Möglichkeiten und Grenzen	
Zeitbedarf: ca. 6 UE á 67,5 Min.	Spektrum der elektromagn. Strahlung		
Forschung am CERN und DESY	Strahlung und Materie	UF3 Systematisierung	
Was sind die kleinsten Bausteine der Materie?	Standardmodell der Elementarteilchen	E6 Modelle	
Zeitbedarf: ca. 4 UE á 67,5 Min.			
Navigationssysteme	Relativität von Raum und Zeit	UF1 Wiedergabe	
Welchen Einfluss hat Bewegung auf den Ablauf	Konstanz der Lichtgeschwindigkeit	E6 Modelle	
der Zeit?	Zeitdilatation		
Zeitbedarf: ca. 3 UE á 67,5 Min.			
Teilchenbeschleuniger	Relativität von Raum und Zeit	UF4 Vernetzung	
Ist die Masse bewegter Teilchen konstant?	Veränderlichkeit der Masse	B1 Kriterien	
Zeitbedarf: ca. 4 UE á 67,5 Min.	Energie-Masse Äquivalenz		
Das heutige Weltbild	Relativität von Raum und Zeit	E7 Arbeits- und Denkweisen	
Welchen Beitrag liefert die Relativitätstheorie	Konstanz der Lichtgeschwindigkeit	K3 Präsentation	
zur Erklärung unserer Welt?	Zeitdilatation		
 	Veränderlichkeit der Masse		
Zeitbedarf: ca. 1 UE á 67,5 Min.	Energie-Masse Äquivalenz		
Summe Qualifikationsphase (Q2) – GRUNDKURS: 41 Stunden			

Qualifikationsphase 1 (Leistungskurs)

Kontext und Leitfrage	Inhaltsfelder, Inhaltliche Schwerpunkte	Kompetenzschwerpunkte
Satellitennavigation – Zeitmessung ist nicht	Relativitätstheorie	UF2 Auswahl
absolut	Konstanz der Lichtgeschwindigkeit	E6 Modelle
Welchen Einfluss hat Bewegung auf den Ablauf	Problem der Gleichzeitigkeit	
der Zeit?		
Zeitbedarf: ca. 2 UE á 67,5 Min.		
Höhenstrahlung	Relativitätstheorie	E5 Auswertung
Warum erreichen Myonen aus der oberen	Zeitdilatation und Längenkontraktion	K3 Präsentation
Atmosphäre die Erdoberfläche?	-	
Zeitbedarf: ca. 2 UE á 67,5 Min.		
Teilchenbeschleuniger - Warum Teilchen aus	Relativitätstheorie	UF4 Vernetzung
dem Takt geraten	Relativistische Massenzunahme	B1 Kriterien
Ist die Masse bewegter Teilchen konstant?	Energie-Masse-Beziehung	
Zeitbedarf: ca. 5 UE á 67,5 Min.		
Satellitennavigation – Zeitmessung unter dem	Relativitätstheorie	K3 Präsentation
Einfluss von Geschwindigkeit und Gravitation	Der Einfluss der Gravitation auf die	
Beeinflusst Gravitation den Ablauf der Zeit?	Zeitmessung	
Zeitbedarf: ca. 2 UE á 67,5 Min.		
Das heutige Weltbild	Relativitätstheorie	B4 Möglichkeiten und Grenzen
Welchen Beitrag liefert die Relativitätstheorie	Konstanz der Lichtgeschwindigkeit	
zur Erklärung unserer Welt?	Problem der Gleichzeitigkeit	
Zoithadarfi ca 2 LIF á 67 F Min	Zeitdilatation und Längenkontraktion	
Zeitbedarf: ca. 2 UE á 67,5 Min.	Relativistische Massenzunahme	
	Energie-Masse-Beziehung	
	Der Einfluss der Gravitation auf die Zeitmes.	

Untersuchung von Elektronen	Elektrik	UF1 Wiedergabe	
Wie können physikalische Eigenschaften wie die	Eigenschaften elektrischer Ladungen und	UF2 Auswahl	
Ladung und die Masse eines Elektrons	ihrer Felder	E6 Modelle	
gemessen werden?	Bewegung von Ladungsträgern in	K3 Präsentation	
	elektrischen und magnetischen Feldern	B1 Kriterien	
Zeitbedarf: ca. 16 UE á 67,5 Min.	J	B4 Möglichkeiten und Grenzen	
Aufbau und Funktionsweise wichtiger Versuchs-	Elektrik	UF2 Auswahl	
und Messapparaturen	Eigenschaften elektrischer Ladungen und	UF4 Vernetzung	
Wie und warum werden physikalische Größen	ihrer Felder	E1 Probleme und Fragestellungen	
meistens elektrisch erfasst und wie werden sie	Bewegung von Ladungsträgern in	E5 Auswertung	
verarbeitet?	elektrischen und magnetischen Feldern	E6 Modelle	
	_	K3 Präsentation	
Zeitbedarf: ca. 14 UE á 67,5 Min.		B1 Kriterien	
		B4 Möglichkeiten und Grenzen	
Erzeugung, Verteilung und Bereitstellung	Elektrik	UF2 Auswahl	
elektrischer Energie	Elektromagnetische Induktion	E6 Modelle	
Wie kann elektrische Energie gewonnen, verteilt und bereitgestellt werden?		B4 Möglichkeiten und Grenzen	
Zeitbedarf: ca. 14 UE á 67,5 Min.			
Physikalische Grundlagen der drahtlosen	Elektrik	UF1 Wiedergabe	
Nachrichtenübermittlung	Elektromagnetische Schwingungen und	UF2 Auswahl	
Wie können Nachrichten ohne Materietransport	Wellen	E4 Untersuchungen und Experimente	
übermittelt werden?		E5 Auswertung	
7-11		E6 Modelle	
Zeitbedarf: ca. 18 UE á 67,5 Min.		K3 Präsentation	
		B1 Kriterien	
		B4 Möglichkeiten und Grenzen	
Summe Qualifikationsphase (Q1) – LEISTUNGSKURS: 120 Stunden			

Qualifikationsphase 2 (Leistungskurs)

Kontext und Leitfrage	Inhaltsfelder, Inhaltliche Schwerpunkte	Kompetenzschwerpunkte
Erforschung des Photons	Quantenphysik	UF2 Auswahl
Besteht Licht doch aus Teilchen?	Licht und Elektronen als Quantenobjekte	E6 Modelle
Zeitbedarf: ca. 6 UE á 67,5 Min.	Welle-Teilchen-DualismusQuantenphysik und klassische Physik	E7 Arbeits- und Denkweisen
Röntgenstrahlung, Erforschung des Photons	Quantenphysik	UF1 Wiedergabe
Was ist Röntgenstrahlung?	Licht und Elektronen als Quantenobjekte	E6 Modelle
Zeitbedarf: ca. 6 UE á 67,5 Min		
Erforschung des Elektrons	Quantenphysik	UF1 Wiedergabe
Kann das Verhalten von Elektronen und	Welle-Teilchen-Dualismus	K3 Präsentation
Photonen durch ein gemeinsames Modell		
beschrieben werden?		
Zeitbedarf: ca. 4 UE á 67,5 Min.		
Die Welt kleinster Dimensionen – Mikroobjekte	Quantenphysik	UF1 Wiedergabe
und Quantentheorie	Welle-Teilchen-Dualismus und	E7 Arbeits- und Denkweisen
Was ist anders im Mikrokosmos?	Wahrscheinlichkeitsinterpretation	
Zeitbedarf: ca. 6 UE á 67,5 Min.	Quantenphysik und klassische Physik	
Geschichte der Atommodelle, Lichtquellen und	Atom-, Kern- und Elementarteilchenphysik	UF1 Wiedergabe
ihr Licht	Atomaufbau	E5 Auswertung
Wie gewinnt man Informationen zum Aufbau		E7 Arbeits- und Denkweisen
der Materie?		
Zeitbedarf: ca. 6 UE á 67,5 Min.		

Physik in der Medizin (Bildgebende Verfahren, Radiologie) Wie nutzt man Strahlung in der Medizin?	 Atom-, Kern- und Elementarteilchenphysik Ionisierende Strahlung Radioaktiver Zerfall 	UF3 Systematisierung E6 Modelle UF4 Vernetzung		
Zeitbedarf: ca. 9 UE á 67,5 Min.				
(Erdgeschichtliche) Altersbestimmungen Wie funktioniert die ¹⁴ C-Methode?	Atom-, Kern- und ElementarteilchenphysikRadioaktiver Zerfall	UF2 Auswahl E5 Auswertung		
Zeitbedarf: ca. 6 UE á 67,5 Min.				
Energiegewinnung durch nukleare Prozesse Wie funktioniert ein Kernkraftwerk? Zeitbedarf: ca. 6 UE á 67,5 Min.	 Atom-, Kern- und Elementarteilchenphysik Kernspaltung und Kernfusion Ionisierende Strahlung 	B1 Kriterien UF4 Vernetzung		
Forschung am CERN und DESY – Elementarteilchen und ihre fundamentalen Wechselwirkungen Was sind die kleinsten Bausteine der Materie?	 Atom-, Kern- und Elementarteilchenphysik Elementarteilchen und ihre Wechselwirkungen 	UF3 Systematisierung K2 Recherche		
Zeitbedarf: ca. 7 UE á 67,5 Min.				
Summe Qualifikationsphase (Q2) – LEISTUNGSKURS: 89 Stunden				

Konkretisierte Unterrichtsvorhaben für die Einführungsphase Inhaltsfeld: *Mechanik*

Kontext: Physik und Sport

<u>Leitfrage:</u> Wie lassen sich Bewegungen vermessen, analysieren und optimieren? <u>Inhaltliche Schwerpunkte:</u> Kräfte und Bewegungen, Energie und Impuls

Kompetenzschwerpunkte: Schülerinnen und Schüler können ...

- (E7) naturwissenschaftliches Arbeiten reflektieren sowie Veränderungen im Weltbild und in Denk- und Arbeitsweisen in ihrer historischen und kulturellen Entwicklung darstellen (K4) physikalische Aussagen und Behauptungen mit sachlich fundierten und überzeugenden Argumenten begründen bzw. kritisieren.
- (E5) Daten qualitativ und quantitativ im Hinblick auf Zusammenhänge, Regeln oder mathematisch zu formulierende Gesetzmäßigkeiten analysieren und Ergebnisse verallgemeinern,
- (E6) Modelle entwickeln sowie physikalisch-technische Prozesse mithilfe von theoretischen Modellen, mathematischen Modellierungen, Gedankenexperimenten und Simulationen erklären oder vorhersagen,

(UF2)zur Lösung physikalischer Probleme zielführend Definitionen, Konzepte sowie funktionale Beziehungen zwischen physikalischen Größen angemessen und begründet auswählen

Zeitbedarf: ca. 28 UE á 67,5 Min.

Inhalt	Kompetenzen Die Schülerinnen und Schüler	Experiment / Medium	Kommentar/didaktische Hinweise
Beschreibung von Bewegungen im Alltag und im Sport	stellen Änderungen in den Vorstellungen zu Bewegungen und zum Sonnensystem beim Übergang vom Mittelalter zur Neuzeit dar (UF3, E7), entnehmen Kernaussagen zu naturwissenschaftlichen Positionen zu Beginn der Neuzeit aus einfachen historischen Texten (K2, K4).	Textauszüge aus Galileis <i>Discorsi</i> zur Mechanik und zu den Fallgesetzen	Einstieg über faire Beurteilung sportlicher Leistungen (Weitsprung in West bzw. Ostrichtung, Speerwurf usw., Konsequenzen aus der Ansicht einer ruhenden oder einer bewegten Erde) Analyse alltäglicher Bewegungsabläufe, Analyse von Kraftwirkungen auf reibungsfreie
Aristoteles vs. Galilei		Handexperimente zur qualitativen Beobachtung von Fallbewegungen (z. B. Stahlkugel, glattes bzw. zur Kugel zusammengedrücktes Papier, evakuiertes Fallrohr mit Feder und Metallstück)	Körper Vorstellungen zur Trägheit und zur Fallbewegung, Diskussion von Alltagsvorstellungen und physikalischen Konzepten Vergleich der Vorstellungen von Aristoteles und Galilei zur Bewegung, Folgerungen für Vergleichbarkeit von sportlichen Leistungen.
Beschreibung und Analyse von linearen Bewegungen	unterscheiden gleichförmige und gleichmäßig beschleunigte Bewegungen und erklären zugrundeliegende Ursachen (UF2), vereinfachen komplexe Bewegungs- und Gleichgewichtszustände durch Komponentenzerlegung bzw. Vektoraddition (E1), planen selbstständig Experimente zur quantitativen und qualitativen Untersuchung einfacher Zusammenhänge (u.a. zur Analyse von Bewegungen), führen sie durch, werten sie aus und bewerten	Digitale Videoanalyse (z.B. mit VIANA, Tracker) von Bewegungen im Sport (Fahrradfahrt o. anderes Fahrzeug, Sprint, Flug von Bällen)	Einführung in die Verwendung von digitaler Videoanalyse (Auswertung von Videosequenzen, Darstellung der Messdaten in Tabellen und Diagrammen mithilfe einer Software zur Tabellenkalkulation) Unterscheidung von gleichförmigen und (beliebig) beschleunigten Bewegungen (insb. auch die gleichmäßig beschleunigte Bewegung) Erarbeitung der Bewegung
	Ergebnisse und Arbeitsprozesse (E2, E5, B1), stellen Daten in Tabellen und sinnvoll skalierten Diagrammen (u. a. <i>t-s-</i> und <i>t-v-</i> Diagramme, Vektordiagramme) von Hand und mit digitalen Werkzeugen angemessen präzise dar (K1, K3),	Luftkissenfahrbahn mit digitaler Messwerterfassung: Messreihe zur gleichmäßig beschleunigten Bewegung	Untersuchung gleichmäßig beschleunigter Bewegungen im Labor Erarbeitung der Bewegungsgesetze der gleichmäßig beschleunigten Bewegung

	erschließen und überprüfen mit Messdaten und Diagrammen funktionale Beziehungen zwischen mechanischen Größen (E5), bestimmen mechanische Größen mit mathematischen Verfahren und mithilfe digitaler Werkzeuge (u.a. Tabellenkalkulation, GTR) (E6),	Freier Fall und Bewegung auf einer schiefen Ebene Wurfbewegungen Basketball, Korbwurf, Abstoß beim Fußball, günstigster Winkel	Erstellung von t-s- und t-v-Diagrammen (auch mithilfe digitaler Hilfsmittel), die Interpretation und Auswertung derartiger Diagramme sollte intensiv geübt werden. Planung von Experimenten durch die Schüler (Auswertung mithilfe der Videoanalyse) Schlussfolgerungen bezüglich des Einflusses der Körpermasse bei Fallvorgängen, auch die Argumentation von Galilei ist besonders gut geeignet, um Argumentationsmuster in Physik explizit zu besprechen Wesentlich: Erarbeitung des Superpositionsprinzips (Komponentenzerlegung und Addition vektorieller Größen)
			Herleitung der Gleichung für die Bahnkurve nur optional
Newton'sche Gesetze, Kräfte und Bewegung	berechnen mithilfe des Newton'schen Kraftgesetzes Wirkungen einzelner oder mehrerer Kräfte auf Bewegungszustände und sagen sie unter dem Aspekt der Kausalität vorher (E6), entscheiden begründet, welche Größen bei der Analyse von Bewegungen zu berücksichtigen oder zu vernachlässigen sind (E1, E4), reflektieren Regeln des Experimentierens in der Planung und Auswertung von Versuchen (u. a. Zielorientierung, Sicherheit, Variablenkontrolle, Kontrolle von Störungen und Fehlerquellen) (E2, E4), geben Kriterien (u.a. Objektivität, Reproduzierbarkeit, Widerspruchsfreiheit, Überprüfbarkeit) an, um die Zuverlässigkeit von Messergebnissen und physikalischen Aussagen zu beurteilen, und nutzen diese bei der Bewertung von eigenen und fremden Untersuchungen (B1),	Luftkissenfahrbahn mit digitaler Messwerterfassung: Messung der Beschleunigung eines Körpers in Abhängigkeit von der beschleunigenden Kraft Protokolle: Funktionen und Anforderungen	Kennzeichen von Laborexperimenten im Vergleich zu natürlichen Vorgängen besprechen, Ausschalten bzw. Kontrolle bzw. Vernachlässigen von Störungen Erarbeitung des Newton'schen Bewegungsgesetzes Definition der Kraft als Erweiterung des Kraftbegriffs aus der Sekundarstufe I. Berechnung von Kräften und Beschleunigungen beim Kugelstoßen, bei Ballsportarten, Einfluss von Reibungskräften

Energie und Leistung Impuls

erläutern die Größen Position, Strecke, Geschwindigkeit, Beschleunigung, Masse, Kraft, Arbeit, Energie, Impuls und ihre Beziehungen zueinander an unterschiedlichen Beispielen (UF2, UF4),

analysieren in verschiedenen Kontexten Bewegungen qualitativ und quantitativ sowohl aus einer Wechselwirkungsperspektive als auch aus einer energetischen Sicht (E1, UF1), verwenden Erhaltungssätze (Energie- und Impulsbilanzen), um Bewegungszustände zu erklären sowie Bewegungsgrößen zu berechnen (E3, E6). beschreiben eindimensionale Stoßvorgänge mit Wechselwirkungen und Impulsänderungen (UF1), begründen argumentativ Sachaussagen, Behauptungen und Vermutungen zu mechanischen Vorgängen und ziehen dabei erarbeitetes Wissen sowie Messergebnisse oder andere objektive Daten heran (K4), bewerten begründet die Darstellung bekannter mechanischer und anderer physikalischer Phänomene in verschiedenen Medien (Printmedien, Filme, Internet) bezüglich ihrer Relevanz und Richtigkeit (K2,

K4),

Einsatz des GTR zur Bestimmung des Integrals Fadenpendel (Schaukel)

Sportvideos

Luftkissenfahrbahn mit digitaler Messwerterfassung: Messreihen zu elastischen und unelastischen Stößen Begriffe der Arbeit und der Energie aus der SI aufgreifen und wiederholen Deduktive Herleitung der Formeln für die mechanischen Energiearten aus den Newton'schen Gesetzen und der Definition der Arbeit

Energieerhaltung an Beispielen (Pendel, Achterbahn, Halfpipe) erarbeiten und für Berechnungen nutzen Energetische Analysen in verschiedenen Sportarten (Hochsprung, Turmspringen,

Sportarten (Hochsprung, Turmspringen, Turnen, Stabhochsprung, Bobfahren, Skisprung)

Begriff des Impulses und Impuls als Erhaltungsgröße

Elastischer und inelastischer Stoß auch an anschaulichen Beispielen aus dem Sport (z.B. Impulserhaltung bei Ballsportarten, Kopfball beim Fußball, Kampfsport)

Hinweis: Erweiterung des Impulsbegriffs am Ende des Kontextes "Auf dem Weg in den Weltraum"

Kontext: Auf dem Weg in den Weltraum

<u>Leitfrage:</u> Wie kommt man zu physikalischen Erkenntnissen über unser Sonnensystem? <u>Inhaltliche Schwerpunkte:</u> Gravitation, Kräfte und Bewegungen, Energie und Impuls

Kompetenzschwerpunkte: Schülerinnen und Schüler können

- (UF4) Zusammenhänge zwischen unterschiedlichen natürlichen bzw. technischen Vorgängen auf der Grundlage eines vernetzten physikalischen Wissens erschließen und aufzeigen.
- (E3) mit Bezug auf Theorien, Modelle und Gesetzmäßigkeiten auf deduktive Weise Hypothesen generieren sowie Verfahren zu ihrer Überprüfung ableiten,
- (E6) Modelle entwickeln sowie physikalisch-technische Prozesse mithilfe von theoretischen Modellen, mathematischen Modellierungen, Gedankenexperimenten und Simulationen erklären oder vorhersagen,
- (E7) naturwissenschaftliches Arbeiten reflektieren sowie Veränderungen im Weltbild und in Denk- und Arbeitsweisen in ihrer historischen und kulturellen Entwicklung darstellen.

Zeitbedarf: ca. 18 UE á 67,5 Min.

Inhalt	Kompetenzen Die Schülerinnen und Schüler	Experiment / Medium	Kommentar/didaktische Hinweise
Aristotelisches Weltbild, Kopernikanische Wende	stellen Änderungen in den Vorstellungen zu Bewegungen und zum Sonnensystem beim Übergang vom Mittelalter zur Neuzeit dar (UF3, E7),	Arbeit mit dem Lehrbuch: Geozentrisches und heliozentrisches Planetenmodell	Einstieg über Film zur Entwicklung des Raketenbaus und der Weltraumfahrt Besuch in einer Sternwarte, Planetarium Bochum Beobachtungen am Himmel Historie: Verschiedene Möglichkeiten der Interpretation der Beobachtungen
Planetenbewegungen und Kepler'sche Gesetze	ermitteln mithilfe der Kepler'schen Gesetze und des Gravitationsgesetzes astronomische Größen (E6), beschreiben an Beispielen Veränderungen im Weltbild und in der Arbeitsweise der Naturwissenschaften, die durch die Arbeiten von Kopernikus, Kepler, Galilei und Newton initiiert wurden (E7, B3).	Drehbare Sternkarte und aktuelle astronomische Tabellen Animationen zur Darstellung der Planetenbewegungen	Orientierung am Himmel Beobachtungsaufgabe: Finden von Planeten am Nachthimmel Tycho Brahes Messungen, Keplers Schlussfolgerungen Benutzung geeigneter Apps
Newton'sches Gravitationsgesetz, Gravitationsfeld	beschreiben Wechselwirkungen im Gravitationsfeld und verdeutlichen den Unterschied zwischen Feldkonzept und Kraftkonzept (UF2, E6),	Arbeit mit dem Lehrbuch, Recherche im Internet	Newton'sches Gravitationsgesetz als Zusammenfassung bzw. Äquivalent der Kepler'schen Gesetze Newton'sche "Mondrechnung" Anwendung des Newton'schen Gravitationsgesetzes und der Kepler'schen Gesetze zur Berechnung von Satellitenbahnen Feldbegriff diskutieren, Definition der Feldstärke über Messvorschrift "Kraft auf Probekörper"
Kreisbewegungen	analysieren und berechnen auftretende Kräfte bei Kreisbewegungen (E6),	Messung der Zentralkraft An dieser Stelle sollen das experimentell-erkundende Verfahren und das deduktive Verfahren zur Erkenntnisgewinnung am Beispiel der Herleitung der	Beschreibung von gleichförmigen Kreisbewegungen, Winkelgeschwindigkeit, Periode, Bahngeschwindigkeit, Frequenz Experimentell-erkundende Erarbeitung der Formeln für Zentripetalkraft und Zentripetalbeschleunigung: Herausstellen der Notwendigkeit der

		Gleichung für die Zentripetalkraft	Konstanthaltung der restlichen Größen bei der
		als zwei wesentliche	experimentellen Bestimmung einer von
		Erkenntnismethoden der Physik	mehreren anderen Größen abhängigen
		bearbeitet werden.	physikalischen Größe (hier bei der
			Bestimmung der Zentripetalkraft in
			Abhängigkeit von der Masse des rotierenden
			Körpers)
			Ergänzend: Deduktion der Formel für die
			Zentripetalbeschleunigung
			Massenbestimmungen im Planetensystem,
			Fluchtgeschwindigkeiten
			Bahnen von Satelliten und Planeten
Impuls und	verwenden Erhaltungssätze (Energie- und	Skateboards und Medizinball	Impuls und Rückstoß
Impulserhaltung,	Impulsbilanzen), um Bewegungszustände zu erklären	Wasserrakete	Bewegung einer Rakete im luftleeren Raum
Rückstoß	sowie Bewegungsgrößen zu berechnen (E3, E6),	Raketentriebwerke für	Untersuchungen mit einer Wasserrakete,
	erläutern unterschiedliche Positionen zum Sinn	Modellraketen	Simulation des Fluges einer Rakete in einer
	aktueller Forschungsprogramme (z.B. Raumfahrt,	Recherchen zu aktuellen	Excel-Tabelle
	Mobilität) und beziehen Stellung dazu (B2, B3).	Projekten von ESA und DLR, auch	Debatte über wissenschaftlichen Wert sowie
		zur Finanzierung	Kosten und Nutzen ausgewählter Programme

Kontext: Schall

<u>Leitfrage:</u> Wie lässt sich Schall physikalisch untersuchen? <u>Inhaltliche Schwerpunkte:</u> Schwingungen und Wellen, Kräfte und Bewegungen, Energie und Impuls

Kompetenzschwerpunkte: Schülerinnen und Schüler können

(E2) kriteriengeleitet beobachten und messen sowie auch komplexe Apparaturen für Beobachtungen und Messungen erläutern und sachgerecht verwenden, (UF1) physikalische Phänomene und Zusammenhänge unter Verwendung von Theorien, übergeordneten Prinzipien/Gesetzen und Basiskonzepten beschreiben und erläutern, (K1) Fragestellungen, Untersuchungen, Experimente und Daten nach gegebenen Strukturen dokumentieren und stimmig rekonstruieren, auch mit Unterstützung digitaler Werkzeuge

Zeitbedarf: ca. 6 UE á 67,5 Min.

Inhalt	Kompetenzen Die Schülerinnen und Schüler	Experiment / Medium	Kommentar/didaktische Hinweise
Entstehung und Ausbreitung von Schall	erklären qualitativ die Ausbreitung mechanischer Wellen (Transversal- oder Longitudinalwelle) mit den Eigenschaften des Ausbreitungsmediums (E6),	Stimmgabeln, Lautsprecher, Frequenzgenerator, Frequenzmessgerät, Schallpegelmesser, rußgeschwärzte Glasplatte, Schreibstimmgabel, Klingel und Vakuumglocke	Erarbeitung der Grundgrößen zur Beschreibung von Schwingungen und Wellen: Frequenz (Periode) und Amplitude mittels der Höreindrücke des Menschen
Modelle der Wellenausbreitung	beschreiben Schwingungen und Wellen als Störungen eines Gleichgewichts und identifizieren die dabei auftretenden Kräfte (UF1, UF4),	Lange Schraubenfeder, Wellenwanne	Entstehung von Longitudinal- und Transversalwellen Ausbreitungsmedium, Möglichkeit der Ausbreitung longitudinaler. bzw. transversaler Schallwellen in Gasen, Flüssigkeiten und festen Körpern
Erzwungene Schwingungen und Resonanz	erläutern das Auftreten von Resonanz mithilfe von Wechselwirkung und Energie (UF1).	Stimmgabeln	Resonanz (auch Tacoma-Bridge, Millennium- Bridge) Resonanzkörper von Musikinstrumenten

Konkretisierte Unterrichtsvorhaben für die Qualifikationsphase 1 (Grundkurs)

Inhaltsfeld: Quantenobjekte

Kontext: Erforschung des Photons

<u>Leitfrage:</u> Wie kann das Verhalten von Licht beschrieben und erklärt werden? <u>Inhaltliche Schwerpunkte:</u> Photon (Wellenaspekt)

Kompetenzschwerpunkte: Schülerinnen und Schüler können

- (E2) kriteriengeleitet beobachten und messen sowie auch komplexe Apparaturen für Beobachtungen und Messungen erläutern und sachgerecht verwenden,
- (E5) Daten qualitativ und quantitativ im Hinblick auf Zusammenhänge, Regeln oder mathematisch zu formulierende Gesetzmäßigkeiten analysieren und Ergebnisse verallgemeinern,
- (K3) physikalische Sachverhalte und Arbeitsergebnisse unter Verwendung situationsangemessener Medien und Darstellungsformen adressatengerecht präsentieren

Zeitbedarf: ca. 9 UE á 67,5 Min.

Inhalt	Kompetenzen Die Schülerinnen und Schüler	Experiment / Medium	Kommentar/didaktische Hinweise
Beugung und	veranschaulichen mithilfe der Wellenwanne	Doppelspalt und Gitter,	Ausgangspunkt: Beugung von Laserlicht
Interferenz	qualitativ unter Verwendung von Fachbegriffen auf	Wellenwanne	Modellbildung mit Hilfe der Wellenwanne
Lichtwellenlänge,	der Grundlage des Huygens'schen Prinzips	quantitative Experimente mit	(ggf. als Schülerpräsentation)
Lichtfrequenz,	Kreiswellen, ebene Wellen sowie die Phänomene	Laserlicht	Bestimmung der Wellenlängen von Licht mit
Kreiswellen,	Beugung, Interferenz, Reflexion und Brechung (K3),		Doppelspalt und Gitter
ebene Wellen,	bestimmen Wellenlängen und Frequenzen von		Sehr schön sichtbare Beugungsphänomene
Beugung,	Licht mit <i>Doppelspalt</i> und <i>Gitter</i> (E5),		finden sich vielfach bei Meereswellen (s.
Brechung			Google-Earth)
Quantelung der	demonstrieren anhand eines Experiments zum	Photoeffekt	Roter Faden: Von Hallwachs bis
Energie von Licht,	Photoeffekt den Quantencharakter von Licht und	Hallwachsversuch	Elektronenbeugung
Austrittsarbeit	bestimmen den Zusammenhang von Energie,	Vakuumphotozelle	Bestimmung des Planck'schen
	Wellenlänge und Frequenz von Photonen sowie die		Wirkungsquantums und der Austrittsarbeit
	Austrittsarbeit der Elektronen (E5, E2),		Hinweis: Formel für die max. kinetische
			Energie der Photoelektronen wird zunächst
			vorgegeben.
			Der Zusammenhang zwischen Spannung,
			Ladung und Überführungsarbeit wird
			ebenfalls vorgegeben und nur plausibel
			gemacht. Er muss an dieser Stelle nicht
			grundlegend hergeleitet werden

Kontext: Erforschung des Elektrons

<u>Leitfrage:</u> Wie können physikalische Eigenschaften wie die Ladung und die Masse eines Elektrons gemessen werden?

Inhaltliche Schwerpunkte: Elektron (Teilchenaspekt)

Kompetenzschwerpunkte: Schülerinnen und Schüler können

- (UF1) physikalische Phänomene und Zusammenhänge unter Verwendung von Theorien, übergeordneten Prinzipien / Gesetzen und Basiskonzepten beschreiben und erläutern, (UF3) physikalische Sachverhalte und Erkenntnisse nach fachlichen Kriterien ordnen und strukturieren,
- (E5) Daten qualitativ und quantitativ im Hinblick auf Zusammenhänge, Regeln oder mathematisch zu formulierende Gesetzmäßigkeiten analysieren und Ergebnisse verallgemeinern,
- (E6) Modelle entwickeln sowie physikalisch-technische Prozesse mithilfe von theoretischen Modellen, mathematischen Modellierungen, Gedankenexperimenten und Simulationen erklären oder vorhersagen

Zeitbedarf: ca. 10 UE á 67,5 Min.

Inhalt	Kompetenzen Die Schülerinnen und Schüler	Experiment / Medium	Kommentar/didaktische Hinweise
Elementarladung	erläutern anhand einer vereinfachten Version des Millikanversuchs die grundlegenden Ideen und Ergebnisse zur Bestimmung der Elementarladung (UF1, E5), untersuchen, ergänzend zum Realexperiment, Computersimulationen zum Verhalten von Quantenobjekten (E6).	schwebender Wattebausch Millikanversuch Schwebefeldmethode (keine Stokes'sche Reibung) Auch als Simulation möglich	Begriff des elektrischen Feldes in Analogie zum Gravitationsfeld besprechen, Definition der Feldstärke über die Kraft auf einen Probekörper, in diesem Fall die Ladung Homogenes elektrisches Feld im Plattenkondensator, Zusammenhangs zwischen Feldstärke im Plattenkondensator, Spannung und Abstand der Kondensatorplatten vorgeben und durch Auseinanderziehen der geladenen Platten demonstrieren
Elektronenmasse	beschreiben Eigenschaften und Wirkungen homogener elektrischer und magnetischer Felder und erläutern deren Definitionsgleichungen. (UF2, UF1), bestimmen die Geschwindigkeitsänderung eines Ladungsträgers nach Durchlaufen einer elektrischen Spannung (UF2), modellieren Vorgänge im Fadenstrahlrohr (Energie der Elektronen, Lorentzkraft) mathematisch, variieren Parameter und leiten dafür deduktiv Schlussfolgerungen her, die sich experimentell überprüfen lassen, und ermitteln die Elektronenmasse (E6, E3, E5),	e/m-Bestimmung mit dem Fadenstrahlrohr und Helmholtzspulenpaar auch Ablenkung des Strahls mit Permanentmagneten (Lorentzkraft) evtl. Stromwaage bei hinreichend zur Verfügung stehender Zeit) Messung der Stärke von Magnetfeldern mit der Hallsonde	Einführung der 3-Finger-Regel und Angabe der Gleichung für die Lorentzkraft: Einführung des Begriffs des magnetischen Feldes (in Analogie zu den beiden anderen Feldern durch Kraft auf Probekörper, in diesem Fall bewegte Ladung oder stromdurchflossener Leiter) und des Zusammenhangs zwischen magnetischer Kraft, Leiterlänge und Stromstärke. Vertiefung des Zusammenhangs zwischen Spannung, Ladung und Überführungsarbeit am Beispiel Elektronenkanone.
Streuung von Elektronen an Festkörpern, de Broglie- Wellenlänge	erläutern die Aussage der de Broglie-Hypothese, wenden diese zur Erklärung des Beugungsbildes beim <i>Elektronenbeugungsexperiment</i> an und bestimmen die Wellenlänge der Elektronen (UF1, UF2, E4).	Experiment zur Elektronenbeugung an polykristallinem Graphit	Veranschaulichung der Bragg-Bedingung analog zur Gitterbeugung

Kontext: Photonen und Elektronen als Quantenobjekte

<u>Leitfrage:</u> Kann das Verhalten von Elektronen und Photo-nen durch ein gemeinsames Modell beschrieben werden?

<u>Inhaltliche Schwerpunkte:</u> Elektron und Photon (Teilchenaspekt, Wellenaspekt), Quantenobjekte und ihre Eigenschaften

Kompetenzschwerpunkte: Schülerinnen und Schüler können

- (E6) Modelle entwickeln sowie physikalisch-technische Prozesse mithilfe von theoretischen Modellen, mathematischen Modellierungen, Gedankenexperimenten und Simulationen erklären oder vorhersagen,
- (E7) naturwissenschaftliches Arbeiten reflektieren sowie Veränderungen im Weltbild und in Denk- und Arbeitsweisen in ihrer historischen und kulturellen Entwicklung darstellen.
- (K4) sich mit anderen über physikalische Sachverhalte und Erkenntnisse kritisch-konstruktiv austauschen und dabei Behauptungen oder Beurteilungen durch Argumente belegen bzw. widerlegen.
- (B4) begründet die Möglichkeiten und Grenzen physikalischer Problemlösungen und Sichtweisen bei innerfachlichen, naturwissenschaftlichen und gesellschaftlichen Fragestellungen bewerten.

Zeitbedarf: ca. 3 UE á 67,5 Min.

Inhalt	Kompetenzen Die Schülerinnen und Schüler	Experiment / Medium	Kommentar/didaktische Hinweise
Licht und Materie	erläutern am Beispiel der Quantenobjekte Elektron und Photon die Bedeutung von Modellen als grundlegende Erkenntniswerkzeuge in der Physik (E6, E7), verdeutlichen die Wahrscheinlichkeitsinterpretation für Quantenobjekte unter Verwendung geeigneter Darstellungen (Graphiken, Simulationsprogramme) (K3). zeigen an Beispielen die Grenzen und Gültigkeitsbereiche von Wellen- und Teilchenmodellen für Licht und Elektronen auf (B4, K4), beschreiben und diskutieren die Kontroverse um die Kopenhagener Deutung und den Welle-Teilchen-Dualismus (B4, K4).	Computersimulation Doppelspalt Photoeffekt	Reflexion der Bedeutung der Experimente für die Entwicklung der Quantenphysik

Inhaltsfeld: Elektrodynamik

Kontext: Energieversorgung und Transport mit Generatoren und Transformatoren

<u>Leitfrage:</u> Wie kann elektrische Energie gewonnen, verteilt und bereitgestellt werden? <u>Inhaltliche Schwerpunkte:</u> Spannung und elektrische Energie, Induktion, Spannungswandlung

Kompetenzschwerpunkte: Schülerinnen und Schüler können

- (UF2) zur Lösung physikalischer Probleme zielführend Definitionen, Konzepte sowie funktionale Beziehungen zwischen physikalischen Größen angemessen und begründet auswählen,
- (UF4) Zusammenhänge zwischen unterschiedlichen natürlichen bzw. technischen Vorgängen auf der Grundlage eines vernetzten physikalischen Wissens erschließen und aufzeigen.
- (E2) kriteriengeleitet beobachten und messen sowie auch komplexe Apparaturen für Beobachtungen und Messungen erläutern und sachgerecht verwenden,
- (E5) Daten qualitativ und quantitativ im Hinblick auf Zusammenhänge, Regeln oder mathematisch zu formulierende Gesetzmäßigkeiten analysieren und Ergebnisse verallgemeinern,
- (E6) Modelle entwickeln sowie physikalisch-technische Prozesse mithilfe von theoretischen Modellen, mathematischen Modellierungen, Gedankenexperimenten und Simulationen erklären oder vorhersagen,
- (K3) physikalische Sachverhalte und Arbeitsergebnisse unter Verwendung situationsangemessener Medien und Darstellungsformen adressatengerecht präsentieren, (B1) fachliche, wirtschaftlich-politische und ethische Kriterien bei Bewertungen von physikalischen oder technischen Sachverhalten unterscheiden und begründet gewichten,

Zeitbedarf: ca. 12 UE á 67,5 Min.

Inhalt	Kompetenzen Die Schülerinnen und Schüler	Experiment / Medium	Kommentar/didaktische Hinweise
Wandlung von mechanischer in elektrische Energie: Elektromagnetische Induktion Induktionsspannung	erläutern am Beispiel der <i>Leiterschaukel</i> das Auftreten einer Induktionsspannung durch die Wirkung der Lorentzkraft auf bewegte Ladungsträger (UF1, E6), definieren die Spannung als Verhältnis von Energie und Ladung und bestimmen damit Energien bei elektrischen Leitungsvorgängen (UF2), bestimmen die relative Orientierung von Bewegungsrichtung eines Ladungsträgers, Magnetfeldrichtung und resultierender Kraftwirkung mithilfe einer Drei-Finger-Regel (UF2, E6), werten Messdaten, die mit einem <i>Oszilloskop</i> bzw. mit einem <i>Messwerterfassungssystem</i> gewonnen wurden, im Hinblick auf Zeiten, Frequenzen und Spannungen aus (E2, E5).	bewegter Leiter im (homogenen) Magnetfeld - "Leiterschaukelversuch" Messung von Spannungen mit diversen Spannungsmessgeräten (nicht nur an der Leiterschaukel) Gedankenexperimente zur Überführungsarbeit, die an einer Ladung verrichtet wird. Deduktive Herleitung der Beziehung zwischen <i>U, v</i> und <i>B</i> .	Definition der Spannung und Erläuterung anhand von Beispielen für Energieumwandlungsprozesse bei Ladungstransporten, Anwendungsbeispiele. Das Entstehen einer Induktionsspannung bei bewegtem Leiter im Magnetfeld wird mit Hilfe der Lorentzkraft erklärt, eine Beziehung zwischen Induktionsspannung, Leitergeschwindigkeit und Stärke des Magnetfeldes wird (deduktiv) hergeleitet. Die an der Leiterschaukel registrierten (zeitabhängigen) Induktionsspannungen werden mit Hilfe der hergeleiteten Beziehung auf das Zeit-Geschwindigkeit-Gesetz des bewegten Leiters zurückgeführt.
Technisch praktikable Generatoren: Erzeugung sinusförmiger Wechselspannungen	recherchieren bei vorgegebenen Fragestellungen historische Vorstellungen und Experimente zu Induktionserscheinungen (K2), erläutern adressatenbezogen Zielsetzungen, Aufbauten und Ergebnisse von Experimenten im Bereich der Elektrodynamik jeweils sprachlich angemessen und verständlich (K3),	Internetquellen, Lehrbücher, Firmeninformationen, Filme und Applets zum Generatorprinzip Experimente mit drehenden Leiterschleifen in (näherungsweise homogenen) Magnetfeldern, Wechselstromgeneratoren	Hier bietet es sich an, arbeitsteilige Präsentationen auch unter Einbezug von Realexperimenten anfertigen zu lassen.
	erläutern das Entstehen sinusförmiger Wechselspannungen in Generatoren (E2, E6), werten Messdaten, die mit einem <i>Oszilloskop</i> bzw. mit einem <i>Messwerterfassungssystem</i> gewonnen wurden, im Hinblick auf Zeiten, Frequenzen und	Messung und Registrierung von Induktionsspannungen mit Oszilloskop und digitalem Messwerterfassungssystem	Der Zusammenhang zwischen induzierter Spannung und zeitlicher Veränderung der senkrecht vom Magnetfeld durchsetzten Fläche wird "deduktiv" erschlossen.

	Spannungen aus (E2, E5). führen Induktionserscheinungen an einer Leiterschleife auf die beiden grundlegenden Ursachen "zeitlich veränderliches Magnetfeld" bzw. "zeitlich veränderliche (effektive) Fläche" zurück (UF3, UF4),		
Nutzbarmachung elektrischer Energie durch "Transformation" Transformator	erläutern adressatenbezogen Zielsetzungen, Aufbauten und Ergebnisse von Experimenten im Bereich der Elektrodynamik jeweils sprachlich angemessen und verständlich (K3), ermitteln die Übersetzungsverhältnisse von Spannung und Stromstärke beim Transformator (UF1, UF2). geben Parameter von Transformatoren zur gezielten Veränderung einer elektrischen Wechselspannung an (E4), werten Messdaten, die mit einem Oszilloskop bzw. mit einem Messwerterfassungssystem gewonnen wurden, im Hinblick auf Zeiten, Frequenzen und Spannungen aus (E2, E5). führen Induktionserscheinungen an einer Leiterschleife auf die beiden grundlegenden Ursachen "zeitlich veränderliches Magnetfeld" bzw. "zeitlich veränderliche (effektive) Fläche" zurück (UF3, UF4),	diverse "Netzteile" von Elektro- Kleingeräten (mit klassischem Transformator) Internetquellen, Lehrbücher, Firmeninformationen Demo-Aufbautransformator mit geeigneten Messgeräten ruhende Induktionsspule in wechselstromdurchflossener Feldspule - mit Messwerterfassungssystem zur zeitaufgelösten Registrierung der Induktionsspannung und des zeitlichen Verlaufs der Stärke des magnetischen Feldes	Der Transformator wird eingeführt und die Übersetzungsverhältnisse der Spannungen experimentell ermittelt. Dies kann auch durch einen Schülervortrag erfolgen (experimentell und medial gestützt). Der Zusammenhang zwischen induzierter Spannung und zeitlicher Veränderung der Stärke des magnetischen Feldes wird experimentell im Lehrerversuch erschlossen. Die registrierten Messdiagramme werden von den SuS eigenständig ausgewertet.
Energieerhaltung Ohm'sche "Verluste"	verwenden ein physikalisches <i>Modellexperiment zu Freileitungen</i> , um technologische Prinzipien der Bereitstellung und Weiterleitung von elektrischer Energie zu demonstrieren und zu erklären (K3), bewerten die Notwendigkeit eines geeigneten Transformierens der Wechselspannung für die	Modellexperiment (z.B. mit Hilfe von Aufbautransformatoren) zur Energieübertragung und zur Bestimmung der "Ohm'schen Verluste" bei der Übertragung	Hier bietet sich ein arbeitsteiliges Gruppenpuzzle an, in dem Modellexperimente einbezogen werden.

Lehrplan Physik -	- Städt.	Röntgen-	Gymnasium	Remscheid
-------------------	----------	----------	-----------	-----------

	1	larstu	
- L O			TALL

effektive Übertragung elektrischer Energie über große Entfernungen (B1), zeigen den Einfluss und die Anwendung physikalischer Grundlagen in Lebenswelt und Technik am Beispiel der Bereitstellung und Weiterleitung elektrischer Energie auf (UF4), beurteilen Vor- und Nachteile verschiedener Möglichkeiten zur Übertragung elektrischer Energie über große Entfernungen (B2, B1, B4).	elektrischer Energie bei unterschiedlich hohen Spannungen		
--	---	--	--

Kontext: Wirbelströme im Alltag

Leitfrage: Wie kann man Wirbelströme technisch nutzen?

Inhaltliche Schwerpunkte: Induktion

Kompetenzschwerpunkte: Schülerinnen und Schüler können

(UF4) Zusammenhänge zwischen unterschiedlichen natürlichen bzw. technischen Vorgängen auf der Grundlage eines vernetzten physikalischen Wissens erschließen und aufzeigen.

- (E5) Daten qualitativ und quantitativ im Hinblick auf Zusammenhänge, Regeln oder mathematisch zu formulierende Gesetzmäßigkeiten analysieren und Ergebnisse verallgemeinern,
- (B1) fachliche, wirtschaftlich-politische und ethische Kriterien bei Bewertungen von physikalischen oder technischen Sachverhalten unterscheiden und begründet gewichten

Zeitbedarf: ca. 2 UE á 67,5 Min.

Inhalt	Kompetenzen Die Schülerinnen und Schüler	Experiment / Medium	Kommentar/didaktische Hinweise
Lenz´sche Regel	erläutern anhand des <i>Thomson'schen Ringversuchs</i> die Lenz'sche Regel (E5, UF4), bewerten bei technischen Prozessen das Auftreten erwünschter bzw. nicht erwünschter Wirbelströme (B1),	Freihandexperiment: Untersuchung der Relativbewegung eines aufgehängten Metallrings und eines starken Stabmagneten Thomson'scher Ringversuch diverse technische und spielerische Anwendungen, z.B. Dämpfungselement an einer Präzisionswaage, Wirbelstrombremse, "fallender	Ausgehend von kognitiven Konflikten bei den Ringversuchen wird die Lenz'sche Regel erarbeitet Erarbeitung von Anwendungsbeispielen zur Lenz'schen Regel (z.B. Wirbelstrombremse bei Fahrzeugen oder an der Kreissäge)
		Magnet" im Alu-Rohr.	

Konkretisierte Unterrichtsvorhaben für die Qualifikationsphase 2 (Grundkurs)

Inhaltsfeld: Strahlung und Materie

Kontext: Erforschung des Mikro- und Makrokosmos

<u>Leitfrage:</u> Wie gewinnt man Informationen zum Aufbau der Materie? <u>Inhaltliche Schwerpunkte:</u> Energiequantelung der Atomhülle, Spektrum der elektromagnetischen Strahlung

Kompetenzschwerpunkte: Schülerinnen und Schüler können

(UF1) physikalische Phänomene und Zusammenhänge unter Verwendung von Theorien, übergeordneten Prinzipien / Gesetzen und Basiskonzepten beschreiben und erläutern, (E5) Daten qualitativ und quantitativ im Hinblick auf Zusammenhänge, Regeln oder mathematisch zu formulierende Gesetzmäßigkeiten analysieren und Ergebnisse verallgemeinern,

(E2) kriteriengeleitet beobachten und messen sowie auch komplexe Apparaturen für Beobachtungen und Messungen erläutern und sachgerecht verwenden,

Zeitbedarf: ca. 8 UE á 67,5 Min.

Inhalt	Kompetenzen Die Schülerinnen und Schüler	Experiment / Medium	Kommentar/didaktische Hinweise
Kern-Hülle-Modell	erläutern, vergleichen und beurteilen Modelle zur Struktur von Atomen und Materiebausteinen (E6, UF3, B4),	Literaturrecherche, Schulbuch	Ausgewählte Beispiele für Atommodelle
Energieniveaus der Atomhülle	erklären die Energie absorbierter und emittierter Photonen mit den unterschiedlichen Energieniveaus in der Atomhülle (UF1, E6),	Erzeugung von Linienspektren mithilfe von Gasentladungslampen	Deutung der Linienspektren
Quantenhafte Emission und Absorption von Photonen	erläutern die Bedeutung von Flammenfärbung und Linienspektren bzw. Spektralanalyse, die Ergebnisse des Franck-Hertz-Versuches sowie die charakteristischen Röntgenspektren für die Entwicklung von Modellen der diskreten Energiezustände von Elektronen in der Atomhülle (E2, E5, E6, E7),	Franck-Hertz-Versuch	Es kann das Bohr'sche Atommodell angesprochen werden (ohne Rechnungen)
Röntgenstrahlung	erläutern die Bedeutung von Flammenfärbung und Linienspektren bzw. Spektralanalyse, die Ergebnisse des Franck-Hertz-Versuches sowie die charakteristischen Röntgenspektren für die Entwicklung von Modellen der diskreten Energiezustände von Elektronen in der Atomhülle (E2, E5, E6, E7),	Aufnahme von Röntgenspektren (kann mit interaktiven Bildschirmexperimenten (IBE) oder Lehrbuch geschehen, falls keine Schulröntgeneinrichtung vorhanden ist)	Im Zuge der "Elemente der Quantenphysik" kann die Röntgenstrahlung bereits als Umkehrung des Photoeffekts bearbeitet werden Mögliche Ergänzungen: Bremsspektrum mit h-Bestimmung / Bragg-Reflexion
Sternspektren und Fraunhoferlinien	interpretieren Spektraltafeln des Sonnen- spektrums im Hinblick auf die in der Sonnen- und Erdatmosphäre vorhandenen Stoffe (K3, K1), erklären Sternspektren und Fraunhoferlinien (UF1, E5, K2), stellen dar, wie mit spektroskopischen Methoden Informationen über die Entstehung und den Aufbau des Weltalls gewonnen werden können (E2, K1),	Flammenfärbung Darstellung des Sonnenspektrums mit seinen Fraunhoferlinien Spektralanalyse	u. a. Durchstrahlung einer Na-Flamme mit Na- und Hg-Licht (Schattenbildung)

Kontext: Mensch und Strahlung

<u>Leitfrage:</u> Wie wirkt Strahlung auf den Menschen? <u>Inhaltliche Schwerpunkte:</u> Kernumwandlungen, Ionisierende Strahlung, Spektrum der elektromagnetischen Strahlung

Kompetenzschwerpunkte: Schülerinnen und Schüler können

(UF1) physikalische Phänomene und Zusammenhänge unter Verwendung von Theorien, übergeordneten Prinzipien / Gesetzen und Basiskonzepten beschreiben und erläutern, (B3) an Beispielen von Konfliktsituationen mit physikalisch-technischen Hintergründen kontroverse Ziele und Interessen sowie die Folgen wissenschaftlicher Forschung aufzeigen und bewerten, (B4) begründet die Möglichkeiten und Grenzen physikalischer Problemlösungen und Sichtweisen bei innerfachlichen, naturwissenschaftlichen und gesellschaftlichen Fragestellungen bewerten.

Zeitbedarf: ca. 6 UE á 67,5 Min.

Inhalt	Kompetenzen Die Schülerinnen und Schüler	Experiment / Medium	Kommentar/didaktische Hinweise
Strahlungsarten	unterscheiden α -, β -, γ -Strahlung und Röntgenstrahlung sowie Neutronen- und Schwerionenstrahlung (UF3), erläutern den Nachweis unterschiedlicher Arten ionisierender Strahlung mithilfe von Absorptionsexperimenten (E4, E5), bewerten an ausgewählten Beispielen Rollen und Beiträge von Physikerinnen und Physikern zu Erkenntnissen in der Kern- und Elementarteilchenphysik (B1, B3),	Recherche Absorptionsexperimente zu α-, β-, γ-Strahlung	Wiederholung und Vertiefung aus der Sek. I
Elementumwandlung	erläutern den Begriff Radioaktivität und beschreiben zugehörige Kernumwandlungsprozesse (UF1, K1),	Nuklidkarte	
Detektoren	erläutern den Aufbau und die Funktionsweise von Nachweisgeräten für ionisierende Strahlung (<i>Geiger-Müller-Zählrohr</i>) und bestimmen Halbwertszeiten und Zählraten (UF1, E2),	Geiger-Müller-Zählrohr	An dieser Stelle können Hinweise auf Halbleiterdetektoren gegeben werden.
Biologische Wirkung ionisierender Strahlung und Energieaufnahme im menschlichen Gewebe Dosimetrie	beschreiben Wirkungen von ionisierender und elektromagnetischer Strahlung auf Materie und lebende Organismen (UF1), bereiten Informationen über wesentliche biologisch-medizinische Anwendungen und Wirkungen von ionisierender Strahlung für unterschiedliche Adressaten auf (K2, K3, B3, B4), begründen in einfachen Modellen wesentliche biologisch-medizinische Wirkungen von ionisierender Strahlung mit deren typischen physikalischen Eigenschaften (E6, UF4),	ggf. Einsatz eines Films / eines Videos	Sinnvolle Beispiele sind die Nutzung von ionisierender Strahlung zur Diagnose und zur Therapie bei Krankheiten des Menschen (von Lebewesen) sowie zur Kontrolle technische Anlagen.

erläutern das Vorkommen künstlicher und natürlicher Strahlung, ordnen deren Wirkung auf den Menschen mithilfe einfacher dosimetrischer Begriffe ein und bewerten Schutzmaßnahmen im	Erläuterung von einfachen dosimetrischen Begriffe: Aktivität, Energiedosis, Äquivalentdosis
Hinblick auf die Strahlenbelastungen des Menschen im Alltag (B1, K2). bewerten Gefahren und Nutzen der Anwendung physikalischer Prozesse, u. a. von ionisierender	
Strahlung, auf der Basis medizinischer, gesellschaft- licher und wirtschaftlicher Gegebenheiten (B3, B4) bewerten Gefahren und Nutzen der Anwendung	
ionisierender Strahlung unter Abwägung unterschiedlicher Kriterien (B3, B4),	

Kontext: Forschung am CERN und DESY

Leitfrage: Was sind die kleinsten Bausteine der Materie?

Inhaltliche Schwerpunkte: Standardmodell der Elementarteilchen

Kompetenzschwerpunkte: Schülerinnen und Schüler können

(UF3) physikalische Sachverhalte und Erkenntnisse nach fachlichen Kriterien ordnen und strukturieren,

(E6) Modelle entwickeln sowie physikalisch-technische Prozesse mithilfe von theoretischen Modellen, mathematischen Modellierungen, Gedankenexperimenten und Simulationen erklären oder vorhersagen,

Zeitbedarf: ca. 4 UE á 67,5 Min.

Inhalt	Kompetenzen Die Schülerinnen und Schüler	Experiment / Medium	Kommentar/didaktische Hinweise
Kernbausteine und	erläutern mithilfe des aktuellen Standardmodells den	In diesem Bereich sind i. d. R.	
Elementarteilchen	Aufbau der Kernbausteine und erklären mit ihm	keine Realexperimente für Schulen	
	Phänomene der Kernphysik (UF3, E6),	möglich.	
	erklären an einfachen Beispielen	Es z.B. kann auf Internetseiten des	
	Teilchenumwandlungen im Standardmodell (UF1).	CERN und DESY zurückgegriffen	Mögliche Schwerpunktsetzung:
	recherchieren in Fachzeitschriften, Zeitungsartikeln	werden.	Paarerzeugung, Paarvernichtung,
	bzw. Veröffentlichungen von Forschungsein-		
	richtungen zu ausgewählten aktuellen Entwicklungen		
	in der Elementarteilchenphysik (K2).		
(Virtuelles) Photon	vergleichen in Grundprinzipien das Modell des	Lehrbuch, Animationen	Veranschaulichung der
als Austausch-	Photons als Austauschteilchen für die		Austauschwechselwirkung mithilfe geeigneter
teilchen der elektro-	elektromagnetische Wechselwirkung exemplarisch		mechanischer Modelle, auch Problematik
magnetischen	für fundamentale Wechselwirkungen mit dem		dieser Modelle thematisieren
Wechselwirkung	Modell des Feldes (E6).		
Konzept der			
Austauschteilchen			
vs. Feldkonzept			

Inhaltsfeld: Relativität von Raum und Zeit (GK)

Kontext: *Navigationssysteme*

<u>Leitfrage:</u> Welchen Einfluss hat Bewegung auf den Ablauf der Zeit? <u>Inhaltliche Schwerpunkte:</u> Konstanz der Lichtgeschwindigkeit, Zeitdilatation

Kompetenzschwerpunkte: Schülerinnen und Schüler können

(UF1) physikalische Phänomene und Zusammenhänge unter Verwendung von Theorien, übergeordneten Prinzipien / Gesetzen und Basiskonzepten beschreiben und erläutern, (E6) Modelle entwickeln sowie physikalisch-technische Prozesse mithilfe von theoretischen Modellen, mathematischen Modellierungen, Gedankenexperimenten und Simulationen erklären oder vorhersagen

Zeitbedarf: ca. 3 UE á 67,5 Min.

Inhalt	Kompetenzen Die Schülerinnen und Schüler	Experiment / Medium	Kommentar/didaktische Hinweise
Relativität der Zeit	interpretieren das Michelson-Morley-Experiment als	Experiment von Michelson und	Ausgangsproblem: Exaktheit der
	ein Indiz für die Konstanz der Lichtgeschwindigkeit	Morley (Computersimulation)	Positionsbestimmung mit
	(UF4),	Lichtuhr (Gedankenexperiment /	Navigationssystemen
	erklären anschaulich mit der <i>Lichtuhr</i> grundlegende	Computersimulation)	Begründung der Hypothese von der Konstanz
	Prinzipien der speziellen Relativitätstheorie und	Myonenzerfall (Experimentepool	der Lichtgeschwindigkeit mit dem Ausgang des
	ermitteln quantitativ die Formel für die Zeitdilatation	der Universität Wuppertal)	Michelson-Morley-Experiments
	(E6, E7),		Herleitung der Formel für die Zeitdilatation am
	erläutern qualitativ den Myonenzerfalls in der		Beispiel einer "bewegten Lichtuhr".
	Erdatmosphäre als experimentellen Beleg für die von		Der Myonenzerfall in der Erdatmosphäre dient
	der Relativitätstheorie vorhergesagte Zeitdilatation		als experimentelle Bestätigung der
	(E5, UF1).		Zeitdilatation. Betrachtet man das
	erläutern die relativistische Längenkontraktion über		Bezugssystem der Myonen als ruhend, kann
	eine Plausibilitätsbetrachtung (K3),		die Längenkontraktion der Atmosphäre
	begründen mit der Lichtgeschwindigkeit als		plausibel gemacht werden.
	Obergrenze für Geschwindigkeiten von Objekten,		
	dass eine additive Überlagerung von Geschwindig-		Die Formel für die Längenkontraktion wird
	keiten nur für "kleine" Geschwindigkeiten gilt (UF2),		angegeben.
	erläutern die Bedeutung der Konstanz der		
	Lichtgeschwindigkeit als Ausgangspunkt für die		
	Entwicklung der speziellen Relativitätstheorie (UF1),		

Kontext: Teilchenbeschleuniger

Leitfrage: Ist die Masse bewegter Teilchen konstant?

Inhaltliche Schwerpunkte: Veränderlichkeit der Masse, Energie-Masse Äquivalenz

Kompetenzschwerpunkte: Schülerinnen und Schüler können

(UF4) Zusammenhänge zwischen unterschiedlichen natürlichen bzw. technischen Vorgängen auf der Grundlage eines vernetzten physikalischen Wissens erschließen und aufzeigen.

(B1) fachliche, wirtschaftlich-politische und ethische Kriterien bei Bewertungen von physikalischen oder technischen Sachverhalten unterscheiden und begründet gewichten

Zeitbedarf: ca. 4 UE á 67,5 Min.

Inhalt	Kompetenzen Die Schülerinnen und Schüler	Experiment / Medium	Kommentar/didaktische Hinweise
"Schnelle" Ladungs-	erläutern die Funktionsweise eines Zyklotrons und	Zyklotron (in einer Simulation mit	Der Einfluss der Massenzunahme wird in der
träger in E- und B-	argumentieren zu den Grenzen einer Verwendung zur	und ohne Massenveränderlichkeit)	Simulation durch das "Aus-dem-Takt-Geraten"
Feldern	Beschleunigung von Ladungsträgern bei		eines beschleunigten Teilchens im Zyklotron
	Berücksichtigung relativistischer Effekte (K4, UF4),		ohne Rechnung veranschaulicht.
Ruhemasse und	erläutern die Energie-Masse Äquivalenz (UF1).	Film / Video	Die Formeln für die dynamische Masse und
dynamische Masse	zeigen die Bedeutung der Beziehung $E=mc^2$ für die		E=mc ² werden als deduktiv herleitbar
	Kernspaltung und -fusion auf (B1, B3)		angegeben.
			Erzeugung und Vernichtung von Teilchen,
			Hier können Texte und Filme zu Hiroshima und
			Nagasaki eingesetzt werden.

Kontext: Das heutige Weltbild

<u>Leitfrage:</u> Welchen Beitrag liefert die Relativitätstheorie zur Erklärung unserer Welt? <u>Inhaltliche Schwerpunkte:</u> Konstanz der Lichtgeschwindigkeit, Zeitdilatation, Veränderlichkeit der Masse, Energie-Masse Äquivalenz

Kompetenzschwerpunkte: Schülerinnen und Schüler können

- (E7) naturwissenschaftliches Arbeiten reflektieren sowie Veränderungen im Weltbild und in Denk- und Arbeitsweisen in ihrer historischen und kulturellen Entwicklung darstellen.
- (K3) physikalische Sachverhalte und Arbeitsergebnisse unter Verwendung situationsangemessener Medien und Darstellungsformen adressatengerecht präsentieren

Zeitbedarf: ca. 1 UE á 67,5 Min.

Inhalt	Kompetenzen Die Schülerinnen und Schüler	Experiment / Medium	Kommentar/didaktische Hinweise
Gegenseitige	diskutieren die Bedeutung von	Lehrbuch, Film / Video	
Bedingung von	Schlüsselexperimenten bei physikalischen		
Raum und Zeit	Paradigmenwechseln an Beispielen aus der		
	Relativitätstheorie (B4, E7),		
	beschreiben Konsequenzen der relativistischen		
	Einflüsse auf Raum und Zeit anhand anschaulicher		
	und einfacher Abbildungen (K3)		

Konkretisierte Unterrichtsvorhaben für die Qualifikationsphase 1 (Leistungskurs)

Inhaltsfeld: Relativitätstheorie

Kontext: Satellitennavigation – Zeitmessung ist nicht absolut

Leitfrage: Welchen Einfluss hat Bewegung auf den Ablauf der Zeit?

Inhaltliche Schwerpunkte: Konstanz der Lichtgeschwindigkeit, Problem der Gleichzeitigkeit

Kompetenzschwerpunkte: Schülerinnen und Schüler können

(UF2) zur Lösung physikalischer Probleme zielführend Definitionen, Konzepte sowie funktionale Beziehungen zwischen physikalischen Größen angemessen und begründet auswählen,

(E6) Modelle entwickeln sowie physikalisch-technische Prozesse mithilfe von theoretischen Modellen, mathematischen Modellierungen, Gedankenexperimenten und Simulationen erklären oder vorhersagen

Zeitbedarf: ca. 2 UE á 67,5 Min.

Inhalt	Kompetenzen Die Schülerinnen und Schüler	Experiment / Medium	Kommentar/didaktische Hinweise
Konstanz der Licht-	begründen mit dem Ausgang des Michelson-	Experiment von	Ausgangsproblem: Exaktheit der Positionsbestimmung
geschwindigkeit und	Morley-Experiments die Konstanz der	Michelson und Morley (Com-	mit Navigationssystemen
Problem der	Lichtgeschwindigkeit (UF4, E5, E6),	putersimulation)	Begründung der Hypothese von der Konstanz der
Gleichzeitigkeit	erläutern das Problem der relativen	Relativität der	Lichtgeschwindigkeit mit dem Ausgang des Michelson-
Inertialsysteme	Gleichzeitigkeit mit in zwei verschiedenen	Gleichzeitigkeit	und Morley-Experiments (Computersimulation).
Relativität der	Inertialsystemen jeweils synchronisierten Uhren	(Video / Film)	Das Additionstheorem für relativistische
Gleichzeitigkeit	(UF2),		Geschwindigkeiten kann ergänzend ohne Herleitung
	begründen mit der Lichtgeschwindigkeit als		angegeben werden.
	Obergrenze für Geschwindigkeiten von		
	Objekten Auswirkungen auf die additive		
	Überlagerung von Geschwindigkeiten (UF2).		

Kontext: Höhenstrahlung

<u>Leitfrage:</u> Warum erreichen Myonen aus der oberen Atmosphäre die Erdoberfläche? <u>Inhaltliche Schwerpunkte:</u> Zeitdilatation und Längenkontraktion

Kompetenzschwerpunkte: Schülerinnen und Schüler können

- (E5) Daten qualitativ und quantitativ im Hinblick auf Zusammenhänge, Regeln oder mathematisch zu formulierende Gesetzmäßigkeiten analysieren und Ergebnisse verallgemeinern,
- (K3) physikalische Sachverhalte und Arbeitsergebnisse unter Verwendung situationsangemessener Medien und Darstellungsformen adressatengerecht präsentieren

Zeitbedarf: ca. 2 UE á 67,5 Min.

Inhalt	Kompetenzen Die Schülerinnen und Schüler	Experiment / Medium	Kommentar/didaktische Hinweise
Zeitdilatation und	leiten mithilfe der Konstanz der	Lichtuhr	Mit der Lichtuhr wird der relativistische Faktor γ
relativistischer Faktor	Lichtgeschwindigkeit und des Modells Lichtuhr	(Gedankenexperiment /	hergeleitet.
	quantitativ die Formel für die Zeitdilatation her	Computersimulation)	
(zusätzlich Exkursion)	(E5),	Myonenzerfall (Experimente-	Der Myonenzerfall in der Erdatmosphäre dient als eine
	reflektieren die Nützlichkeit des Modells	pool der Universität – ggfs.	experimentelle Bestätigung der Zeitdilatation.
	Lichtuhr hinsichtlich der Herleitung des	Exkursion an eine	
	relativistischen Faktors (E7).	Universität)	
	erläutern die Bedeutung der Konstanz der		
	Lichtgeschwindigkeit als Ausgangspunkt für die		
	Entwicklung der speziellen Relativitätstheorie		
	(UF1)		
Längenkontraktion	begründen den Ansatz zur Herleitung der	Myonenzerfall (Experimente-	Der Myonenzerfall dient als experimentelle
	Längenkontraktion (E6),	pool der Universität – ggfs.	Bestätigung der Längenkontraktion (im Vergleich zur
	erläutern die relativistischen Phänomene	Exkursion an eine	Zeitdilatation) – s. o.
	Zeitdilatation und Längenkontraktion anhand	Universität) – s. o.	Herleitung der Formel für die Längenkontraktion
	des Nachweises von in der oberen		
	Erdatmosphäre entstehenden Myonen (UF1),		
	beschreiben Konsequenzen der relativistischen		
	Einflüsse auf Raum und Zeit anhand		
	anschaulicher und einfacher Abbildungen (K3),		

Kontext: Teilchenbeschleuniger – Warum Teilchen aus dem Takt geraten

<u>Leitfrage:</u> Ist die Masse bewegter Teilchen konstant? <u>Inhaltliche Schwerpunkte:</u> Relativistische Massenzunahme, Energie-Masse-Beziehung

Kompetenzschwerpunkte: Schülerinnen und Schüler können

(UF4) Zusammenhänge zwischen unterschiedlichen natürlichen bzw. technischen Vorgängen auf der Grundlage eines vernetzten physikalischen Wissens erschließen und aufzeigen.
(B1) fachliche, wirtschaftlich-politische und ethische Kriterien bei Bewertungen von physikalischen oder technischen Sachverhalten unterscheiden und begründet gewichten

Zeitbedarf: ca. 6 UE á 67,5 Min.

Inhalt	Kompetenzen Die Schülerinnen und Schüler	Experiment / Medium	Kommentar/didaktische Hinweise
"Schnelle" Ladungs- träger in E- und B-Fel- dern	erläutern auf der Grundlage historischer Dokumente ein Experiment (Bertozzi-Versuch) zum Nachweis der relativistischen Massenzunahme (K2, K3),	Bertozzi-Experiment (anhand von Literatur)	Hier würde sich eine Schülerpräsentation des Bertozzi- Experiments anbieten. Der Einfluss der Massenzunahme wird in einer Simulation durch das "Aus-dem-Takt-Geraten" eines beschleunigten Teilchens im Zyklotron ohne Rechnung veranschaulicht. Die Formel für die dynamische Masse wird als deduktiv herleitbar angegeben.
Ruhemasse und dynamische Masse	erläutern die Energie-Masse-Beziehung (UF1) berechnen die relativistische kinetische Energie von Teilchen mithilfe der Energie-Masse- Beziehung (UF2)		Die Differenz aus dynamischer Masse und Ruhemasse wird als Maß für die kinetische Energie eines Körpers identifiziert.
Bindungsenergie im Atomkern Annihilation	beschreiben die Bedeutung der Energie-Masse-Äquivalenz hinsichtlich der Annihilation von Teilchen und Antiteilchen (UF4), bestimmen und bewerten den bei der Annihilation von Teilchen und Antiteilchen frei werdenden Energiebetrag (E7, B1), beurteilen die Bedeutung der Beziehung E=mc² für Erforschung und technische Nutzung von Kernspaltung und Kernfusion (B1, B3),	Historische Aufnahme von Teilchenbahnen	Interpretation des Zusammenhangs zwischen Bindungsenergie pro Nukleon und der Kernspaltungs- bzw. Kernfusionsenergie bei den entsprechenden Prozessen. Es können Filme zu Hiroshima und Nagasaki eingesetzt werden. Erzeugung und Vernichtung von Teilchen

Kontext: Satellitennavigation – Zeitmessung unter dem Einfluss von Geschwindigkeit und Gravitation

Leitfrage: Beeinflusst Gravitation den Ablauf der Zeit?

Inhaltliche Schwerpunkte: Der Einfluss der Gravitation auf die Zeitmessung

Kompetenzschwerpunkte: Schülerinnen und Schüler können

(K3) physikalische Sachverhalte und Arbeitsergebnisse unter Verwendung situationsangemessener Medien und Darstellungsformen adressatengerecht präsentieren

Zeitbedarf: ca. 2 UE á 67,5 Min.

Inhalt	Kompetenzen Die Schülerinnen und Schüler	Experiment / Medium	Kommentar/didaktische Hinweise
Gravitation und Zeitmessung	beschreiben qualitativ den Einfluss der Gravitation auf die Zeitmessung (UF4)	Der Gang zweier Atomuhren in unterschiedlicher Höhe in einem Raum (früheres Experimente der PTB Braunschweig) Flug von Atomuhren um die Erde (Video)	Dieser Unterrichtsabschnitt soll lediglich einen ersten – qualitativ orientierten – Einblick in die Äquivalenz von Gravitation und gleichmäßig beschleunigten Bezugssystemen geben. Elemente des Kontextes Satellitennavigation können genutzt werden, um sowohl die Zeitdilatation (infolge der unterschiedlichen Geschwindigkeiten der Satelliten) als auch die Gravitationswirkung (infolge ihres Aufenthalts an verschiedenen Orten im Gravitationsfeld der Erde) zu verdeutlichen.
Die Gleichheit von träger und schwerer Masse (im Rahmen der heutigen Messgenauigkeit)	veranschaulichen mithilfe eines einfachen gegenständlichen Modells den durch die Einwirkung von massebehafteten Körpern hervorgerufenen Einfluss der Gravitation auf die Zeitmessung sowie die "Krümmung des Raums" (K3).	Einsteins Fahrstuhl- Gedankenexperiment Das Zwillingsparadoxon (mit Beschleunigungsphasen und Phasen der gleichförmigen Bewegung Film / Video	An dieser Stelle könnte eine Schülerpräsentation erfolgen (mithilfe der Nutzung von Informationen und Animationen aus dem Internet)

Kontext: Das heutige Weltbild

<u>Leitfrage:</u> Welchen Beitrag liefert die Relativitätstheorie zur Erklärung unserer Welt?

<u>Inhaltliche Schwerpunkte:</u> Konstanz der Lichtgeschwindigkeit, Problem der Gleichzeitigkeit, Zeitdilatation und Längenkontraktion, Relativistische Massenzunahme, Energie-Masse-Beziehung, Der Einfluss der Gravitation auf die Zeitmessung

Kompetenzschwerpunkte: Schülerinnen und Schüler können

(B4) begründet die Möglichkeiten und Grenzen physikalischer Problemlösungen und Sichtweisen bei innerfachlichen, naturwissenschaftlichen und gesellschaftlichen Fragestellungen bewerten.

Zeitbedarf: ca. 1 UE á 67,5 Min.

Inhalt	Kompetenzen Die Schülerinnen und Schüler	Experiment / Medium	Kommentar/didaktische Hinweise
Gegenseitige Bedingung von Raum und Zeit	bewerten Auswirkungen der Relativitätstheorie auf die Veränderung des physikalischen Weltbilds (B4).	Lehrbuchtexte, Internetrecherche	Ggf. Schülervortrag

Inhaltsfeld: Elektrik

Kontext: Untersuchung von Elektronen

<u>Leitfrage:</u> Wie können physikalische Eigenschaften wie die Ladung und die Masse eines Elektrons gemessen werden?

<u>Inhaltliche Schwerpunkte:</u> Eigenschaften elektrischer Ladungen und ihrer Felder,Bewegung von Ladungsträgern in elektrischen und magnetischen Feldern

Kompetenzschwerpunkte: Schülerinnen und Schüler können

(UF1) physikalische Phänomene und Zusammenhänge unter Verwendung von Theorien, übergeordneten Prinzipien / Gesetzen und Basiskonzepten beschreiben und erläutern, (UF2) zur Lösung physikalischer Probleme zielführend Definitionen, Konzepte sowie funktionale Beziehungen zwischen physikalischen Größen angemessen und begründet auswählen, (E6) Modelle entwickeln sowie physikalisch-technische Prozesse mithilfe von theoretischen Modellen, mathematischen Modellierungen, Gedankenexperimenten und Simulationen erklären oder vorhersagen,

(K3) physikalische Sachverhalte und Arbeitsergebnisse unter Verwendung situationsangemessener Medien und Darstellungsformen adressatengerecht präsentieren, (B1) fachliche, wirtschaftlich-politische und ethische Kriterien bei Bewertungen von physikalischen oder technischen Sachverhalten unterscheiden und begründet gewichten, (B4) begründet die Möglichkeiten und Grenzen physikalischer Problemlösungen und Sichtweisen bei innerfachlichen, naturwissenschaftlichen und gesellschaftlichen Fragestellungen bewerten.

Zeitbedarf: ca. 16 á 67,5 Min.

Inhalt	Kompetenzen Die Schülerinnen und Schüler	Experiment / Medium	Kommentar/didaktische Hinweise
Grundlagen: Ladungstrennung, Ladungsträger	erklären elektrostatische Phänomene und Influenz mithilfe grundlegender Eigenschaften elektrischer Ladungen (UF2, E6),	einfache Versuche zur Reibungselektrizität – Anziehung / Abstoßung, halbquantitative Versuche mit Hilfe eines	An dieser Stelle sollte ein Rückgriff auf die S I erfolgen. Das Elektron soll als (ein) Träger der negativen Ladung benannt und seine Eigenschaften untersucht werden.
		Elektrometerverstärkers: Zwei aneinander geriebene Kunststoffstäbe aus unterschiedlichen Materialien tragen betragsmäßig gleiche, aber entgegengesetzte Ladungen, Influenzversuche	
Bestimmung der Elementarladung: elektrische Felder, Feldlinien potentielle Energie im elektrischen Feld, Spannung Kondensator Elementarladung	beschreiben Eigenschaften und Wirkungen homogener elektrischer und magnetischer Felder und erläutern die Definitionsgleichungen der entsprechenden Feldstärken (UF2, UF1), erläutern und veranschaulichen die Aussagen, Idealisierungen und Grenzen von Feldlinienmodellen, nutzen Feldlinienmodelle zur Veranschaulichung typischer Felder und interpretieren Feldlinienbilder (K3, E6, B4),	Skizzen zum prinzipiellen Aufbau des Millikanversuchs, realer Versuchsaufbau oder entsprechende Medien (z. B: RCL (remote control laboratory), einfache Versuche und visuelle Medien zur Veranschaulichung elektrischer Felder im Feldlinienmodell, Plattenkondensator (homogenes E-Feld),	Die Versuchsidee "eines" Millikanversuchs wird erarbeitet. Der Begriff des elektrischen Feldes und das Feldlinienmodell werden eingeführt. Die elektrische Feldstärke in einem Punkt eines elektrischen Feldes, der Begriff "homogenes Feld" und die Spannung werden definiert.
	leiten physikalische Gesetze (u.a. die im homogenen elektrischen Feld gültige Beziehung zwischen Spannung und Feldstärke und den Term für die Lorentzkraft) aus geeigneten Definitionen und bekannten Gesetzen deduktiv her (E6, UF2),	evtl. Apparatur zur Messung der Feldstärke gemäß der Definition, Spannungsmessung am Plattenkondensator, Bestimmung der	Zusammenhang zwischen E und U im homogenen Feld Bestimmung der Elementarladung mit Diskussion der Messgenauigkeit An dieser Stelle sollten Übungsaufgaben erfolgen, z.B. auch zum Coulomb'schen Gesetz.

Bestimmung der Masse eines Elektrons: magnetische Felder, Feldlinien, potentielle Energie im elektrischen Feld, Energie bewegter Ladungsträger, Elektronenmasse	entscheiden für Problemstellungen aus der Elektrik, ob ein deduktives oder ein experimentelles Vorgehen sinnvoller ist (B4, UF2, E1), erläutern an Beispielen den Stellenwert experimenteller Verfahren bei der Definition physikalischer Größen (elektrische und magnetische Feldstärke) und geben Kriterien zu deren Beurteilung an (z.B. Genauigkeit, Reproduzierbarkeit, Unabhängigkeit von Ort und Zeit) (B1, B4), treffen im Bereich Elektrik Entscheidungen für die Auswahl von Messgeräten (Empfindlichkeit, Genauigkeit, Auflösung und Messrate) im Hinblick auf eine vorgegebene Problemstellung (B1), beschreiben qualitativ die Erzeugung eines Elektronenstrahls in einer Elektronenstrahlröhre (UF1, K3), ermitteln die Geschwindigkeitsänderung eines Ladungsträgers nach Durchlaufen einer Spannung (auch relativistisch) (UF2, UF4, B1),	Elementarladung mit dem Millikanversuch Fadenstrahlrohr (zunächst) zur Erarbeitung der Versuchsidee, (z.B.) Stromwaage zur Demonstration der Kraftwirkung auf stromdurchflossene Leiter im Magnetfeld sowie zur Veranschaulichung der Definition der magnetischen Feldstärke, Versuche mit z.B. Oszilloskop, Fadenstrahlrohr, altem (Monochrom-) Röhrenmonitor o. ä. zur Demonstration der Lorentzkraft, Fadenstrahlrohr zur e/m – Bestimmung (das Problem der Messung der magnetischen Feldstärke wird ausgelagert.)	Dieses kann auch nur per Plausibilitätsbetrachtung eingeführt werden. Die Frage nach der Masse eines Elektrons führt zu weiteren Überlegungen. Als Versuchsidee wird (evtl. in Anlehnung an astronomischen Berechnungen in der EF) die Auswertung der Daten einer erzwungenen Kreisbewegung des Teilchens erarbeitet. Dazu wird der Begriff des magnetischen Feldes eingeführt sowie die Veranschaulichung magnetischer Felder (inkl. Feldlinienmodell) erarbeitet. Definition der magnetischen Feldstärke, Definition des homogenen Magnetfeldes, Kraft auf stromdurchflossene Leiter im Magnetfeld, Herleitung der Formel für die Lorentzkraft,
	erläutern den Feldbegriff und zeigen dabei Gemeinsamkeiten und Unterschiede zwischen Gravitationsfeld, elektrischem und magnetischem Feld auf (UF3, E6), entscheiden für Problemstellungen aus der Elektrik, ob ein deduktives oder ein experimentelles Vorgehen sinnvoller ist (B4, UF2, E1),		Ein Verfahren zur Beschleunigung der Elektronen sowie zur Bestimmung ihrer Geschwindigkeit wird erarbeitet.

erläutern und veranschaulichen die Aussagen, Idealisierungen und Grenzen von Feldlinienmodellen, nutzen Feldlinienmodelle zur Veranschaulichung typischer Felder und interpretieren Feldlinienbilder (K3, E6, B4), bestimmen die relative Orientierung von Bewegungsrichtung eines Ladungsträgers, Magnetfeldrichtung und resultierender Kraftwirkung mithilfe einer Drei-Finger-Regel (UF2, E6), leiten physikalische Gesetze (Term für die Lorentzkraft) aus geeigneten Definitionen und bekannten Gesetzen deduktiv her (E6, UF2), beschreiben qualitativ und quantitativ die Bewegung von Ladungsträgern in homogenen elektrischen und magnetischen Feldern sowie in gekreuzten Feldern (Wien-Filter, Hall-Effekt) (E1, E2, E3, E4, E5 UF1, UF4), schließen aus spezifischen Bahnkurvendaten bei der e/m-Bestimmung und beim Massenspektrometer auf wirkende Kräfte sowie Eigenschaften von Feldern und bewegten Ladungsträgern (E5, UF2),

Kontext: Aufbau und Funktionsweise wichtiger Versuchs- und Messapparaturen

<u>Leitfrage:</u> Wie und warum werden physikalische Größen meistens elektrisch erfasst und wie werden sie verarbeitet?

<u>Inhaltliche Schwerpunkte:</u> Eigenschaften elektrischer Ladungen und ihrer Felder 'Bewegung von Ladungsträgern in elektrischen und magnetischen Feldern

Kompetenzschwerpunkte: Schülerinnen und Schüler können

- (UF2) zur Lösung physikalischer Probleme zielführend Definitionen, Konzepte sowie funktionale Beziehungen zwischen physikalischen Größen angemessen und begründet auswählen,
- (UF4) Zusammenhänge zwischen unterschiedlichen natürlichen bzw. technischen Vorgängen auf der Grundlage eines vernetzten physikalischen Wissens erschließen und aufzeigen.
- (E1) in unterschiedlichen Kontexten physikalische Probleme identifizieren, analysieren und in Form physikalischer Fragestellungen präzisieren,
- (E5) Daten qualitativ und quantitativ im Hinblick auf Zusammenhänge, Regeln oder mathematisch zu formulierende Gesetzmäßigkeiten analysieren und Ergebnisse verallgemeinern,
- (E6) Modelle entwickeln sowie physikalisch-technische Prozesse mithilfe von theoretischen Modellen, mathematischen Modellierungen, Gedankenexperimenten und Simulationen erklären oder vorhersagen,
- (K3) physikalische Sachverhalte und Arbeitsergebnisse unter Verwendung situationsangemessener Medien und Darstellungsformen adressatengerecht präsentieren, (B1) fachliche, wirtschaftlich-politische und ethische Kriterien bei Bewertungen von physikalischen oder technischen Sachverhalten unterscheiden und begründet gewichten, (B4) begründet die Möglichkeiten und Grenzen physikalischer Problemlösungen und Sichtweisen bei innerfachlichen, naturwissenschaftlichen und gesellschaftlichen Fragestellungen bewerten.

Zeitbedarf: ca. 14 UE á 67,5 Min.

Inhalt	Kompetenzen	Experiment / Medium	Kommentar/didaktische Hinweise
IIIIait	Die Schülerinnen und Schüler	Experiment / Wediam	Rommentar/ didaktische minweise
Anwendungen in	beschreiben qualitativ und quantitativ die Bewegung	Hallsonde,	Das Problem der Messung der Stärke des
Forschung und	von Ladungsträgern in homogenen elektrischen und	Halleffektgerät,	magnetischen Feldes der Helmholtzspulen
Technik:	magnetischen Feldern sowie in gekreuzten Feldern	diverse Spulen, deren Felder	(e/m – Bestimmung) wird wieder
Bewegung von	(Wien-Filter, Hall-Effekt) (E1, E2, E3, E4, E5 UF1, UF4),	vermessen werden (insbesondere	aufgegriffen,
Ladungsträgern in	erstellen, bei Variation mehrerer Parameter, Tabellen	lange Spulen und	Vorstellung des Aufbaus einer Hallsonde
Feldern	und Diagramme zur Darstellung von Messwerten aus	Helmholtzspulen),	und Erarbeitung der Funktionsweise einer
	dem Bereich der Elektrik (K1, K3, UF3),	Elektronenstrahlablenkröhre	Hallsonde,
	beschreiben qualitativ die Erzeugung eines	visuelle Medien und	Veranschaulichung mit dem Halleffektgerät
	Elektronenstrahls in einer Elektronenstrahlröhre (UF1,	Computersimulationen (ggf. RCLs)	(Silber),
	K3),	zum Massenspektrometer,	Kalibrierung einer Hallsonde,
	ermitteln die Geschwindigkeitsänderung eines	Zyklotron und evtl. weiteren	Messungen mit der Hallsonde, u. a.
	Ladungsträgers nach Durchlaufen einer Spannung	Teilchenbeschleunigern	nachträgliche Vermessung des
	(auch relativistisch) (UF2, UF4, B1),		Helmholtzspulenfeldes,
	schließen aus spezifischen Bahnkurvendaten beim		Bestimmung der magnetischen
	Massenspektrometer auf wirkende Kräfte sowie		Feldkonstante,
	Eigenschaften von Feldern und bewegten		Arbeits- und Funktionsweisen sowie die
	Ladungsträgern, (E5, UF2),		Verwendungszwecke diverser
	erläutern den Feldbegriff und zeigen dabei		Elektronenröhren, Teilchenbeschleuniger
	Gemeinsamkeiten und Unterschiede zwischen		und eines Massenspektrometers werden
	Gravitationsfeld, elektrischem und magnetischem Feld		untersucht.
	auf (UF3, E6),		
	erläutern den Einfluss der relativistischen		
	Massenzunahme auf die Bewegung geladener		
	Teilchen im Zyklotron (E6, UF4),		
	leiten physikalische Gesetze aus geeigneten		
	Definitionen und bekannten Gesetzen deduktiv her		
	(E6, UF2),		
	entscheiden für Problemstellungen aus der Elektrik,		
	ob ein deduktives oder ein experimentelles Vorgehen		
	sinnvoller ist (B4, UF2, E1),		
	wählen Definitionsgleichungen zusammengesetzter		

von Kondensatoren, Energie des elektrischen Feldes entscheiden für Problemstellungen aus der Elektrik, ob ein deduktives oder ein experimentelles Vorgehen sinnvoller ist (B4, UF2, E1), wählen Definitionsgleichungen zusammengesetzter physikalischer Größen sowie physikalische Gesetze (u.a. Coulomb'sches Gesetz, Kraft auf einen stromdurchflossenen Leiter im Magnetfeld, Lorentzkraft, Spannung im homogenen E-Feld) Elektrometermessverstärker, Schülerversuche zur Auf- und Entladung von Kondensatoren (Messungen mit Multimeter) als auch mit kleineren Kapazitäten (Messungen mit Hilfe von Messwerterfassungssystemen), Computer oder GTR/CAS-Rechner zur Messwertverarbeitung ermittelt. Plausibilitätsbetrachtung zur Grundgleichung des elektrischen Feldes) ermittelt. Plausibilitäts	Energie des	Idealisierungen und Grenzen von Feldlinienmodellen, nutzen Feldlinienmodelle zur Veranschaulichung typischer Felder und interpretieren Feldlinienbilder (K3, E6, B4), entscheiden für Problemstellungen aus der Elektrik, ob ein deduktives oder ein experimentelles Vorgehen sinnvoller ist (B4, UF2, E1), wählen Definitionsgleichungen zusammengesetzter physikalischer Größen sowie physikalische Gesetze (u.a. Coulomb'sches Gesetz, Kraft auf einen stromdurchflossenen Leiter im Magnetfeld, Lorentzkraft, Spannung im homogenen <i>E</i> -Feld) problembezogen aus (UF2), leiten physikalische Gesetze aus geeigneten Definitionen und bekannten Gesetzen deduktiv her (E6, UF2), ermitteln die in elektrischen bzw. magnetischen Feldern gespeicherte Energie (Kondensator) (UF2), beschreiben qualitativ und quantitativ, bei	Schülerversuche zur Auf- und Entladung von Kondensatoren sowohl mit großen Kapazitäten (Messungen mit Multimeter) als auch mit kleineren Kapazitäten (Messungen mit Hilfe von Messwerterfassungssystemen), Computer oder GTR/CAS-Rechner	ermittelt. Plausibilitätsbetrachtung zur Grundgleichung des elektrischen Feldes im Feldlinienmodell, Ermittlung der elektrischen Feldkonstante (evtl. Messung), Auf- und Entladevorgänge bei Kondensatoren werden messtechnisch erfasst, computerbasiert ausgewertet und mithilfe von Differentialgleichungen beschrieben. deduktive Herleitung der im elektrischen Feld eines Kondensators gespeicherten
--	-------------	---	--	---

Lehrplan	Physik -	Städt.	Röntgen-(Gymnasium	Remscheid
					•

	1	larstufe II
SO		arctiita II
BIN	Z	

treffen im Bereich Elektrik Entscheidungen für die	
Auswahl von Messgeräten (Empfindlichkeit,	
Genauigkeit, Auflösung und Messrate) im Hinblick auf	
eine vorgegebene Problemstellung (B1),	
wählen begründet mathematische Werkzeuge zur	
Darstellung und Auswertung von Messwerten im	
Bereich der Elektrik (auch computergestützte	
graphische Darstellungen, Linearisierungsverfahren,	
Kurvenanpassungen), wenden diese an und bewerten	
die Güte der Messergebnisse (E5, B4),	

Kontext: Erzeugung, Verteilung und Bereitstellung elektrischer Energie

<u>Leitfrage:</u> Wie kann elektrische Energie gewonnen, verteilt und bereitgestellt werden? <u>Inhaltliche Schwerpunkte:</u> Elektromagnetische Induktion

Kompetenzschwerpunkte: Schülerinnen und Schüler können

- (UF2) zur Lösung physikalischer Probleme zielführend Definitionen, Konzepte sowie funktionale Beziehungen zwischen physikalischen Größen angemessen und begründet auswählen,
- (E6) Modelle entwickeln sowie physikalisch-technische Prozesse mithilfe von theoretischen Modellen, mathematischen Modellierungen, Gedankenexperimenten und Simulationen erklären oder vorhersagen,
- (B4) begründet die Möglichkeiten und Grenzen physikalischer Problemlösungen und Sichtweisen bei innerfachlichen, naturwissenschaftlichen und gesellschaftlichen Fragestellungen bewerten.

Zeitbedarf: ca. 14 UE á 67,5 Min.

Inhalt	Kompetenzen Die Schülerinnen und Schüler	Experiment / Medium	Kommentar/didaktische Hinweise
Induktion, das grundlegende Prinzip bei der Versorgung mit elektrischer Energie: Induktionsvorgänge, Induktionsgesetz, Lenz'sche Regel, Energie des magnetischen Feldes	entscheiden für Problemstellungen aus der Elektrik, ob ein deduktives oder ein experimentelles Vorgehen sinnvoller ist (B4, UF2, E1), wählen Definitionsgleichungen zusammengesetzter physikalischer Größen sowie physikalische Gesetze (u.a. Coulomb'sches Gesetz, Kraft auf einen stromdurchflossenen Leiter im Magnetfeld, Lorentzkraft, Spannung im homogenen E-Feld) problembezogen aus (UF2), leiten physikalische Gesetze aus geeigneten Definitionen und bekannten Gesetzen deduktiv her (E6, UF2), planen und realisieren Experimente zum Nachweis der Teilaussagen des Induktionsgesetzes (E2, E4, E5), führen das Auftreten einer Induktionsspannung auf die zeitliche Änderung der von einem Leiter überstrichenen gerichteten Fläche in einem Magnetfeld zurück (u.a. bei der Erzeugung einer Wechselspannung) (E6), erstellen, bei Variation mehrerer Parameter, Tabellen und Diagramme zur Darstellung von Messwerten aus dem Bereich der Elektrik (K1, K3, UF3), treffen im Bereich Elektrik Entscheidungen für die Auswahl von Messgeräten (Empfindlichkeit, Genauigkeit, Auflösung und Messrate) im Hinblick auf eine vorgegebene Problemstellung (B1), identifizieren Induktionsvorgänge aufgrund der zeitlichen Änderung der magnetischen Feldgröße <i>B</i> in Anwendungs- und Alltagssituationen (E1, E6, UF4),	Medien zur Information über prinzipielle Verfahren zur Erzeugung, Verteilung und Bereitstellung elektrischer Energie, Bewegung eines Leiters im Magnetfeld - Leiterschaukel, einfaches elektrodynamisches Mikrofon, Gleich- und Wechselspannungsgeneratoren (vereinfachte Funktionsmodelle für Unterrichtszwecke) quantitativer Versuch zur elektromagnetischen Induktion bei Änderung der Feldgröße B, registrierende Messung von B(t) und U _{ind} (t), "Aufbau-" Transformatoren zur Spannungswandlung	Leiterschaukelversuch evtl. auch im Hinblick auf die Registrierung einer gedämpften mechanischen Schwingung auswertbar, Gleich- und Wechselspannungsgeneratoren werden nur qualitativ behandelt. Das Induktionsgesetz in seiner allgemeinen Form wird erarbeitet: 1. Flächenänderung (deduktive Herleitung) 2. Änderung der Feldgröße B (quantitatives Experiment) Drehung einer Leiterschleife (qualitative Betrachtung) Der magnetische Fluss wird definiert, das Induktionsgesetz als Zusammenfassung und Verallgemeinerung der Ergebnisse formuliert. qualitative Deutung des Versuchsergebnisses zur Selbstinduktion

Darstellung und Auswertung von Messwerten im Bereich der Elektrik (auch computer-gestützte graphische Darstellungen, Linearisierungsverfahren, Kurvenanpassungen), wenden diese an und bewerten die Güte der Messergebnisse (E5, B4), ermitteln die in magnetischen Feldern gespeicherte Energie (Spule) (UF2), bestimmen die Richtungen von Induktionsströmen mithilfe der Lenz'schen Regel (UF2, UF4, E6), begründen die Lenz'sche Regel mithilfe des Energieund des Wechselwirkungskonzeptes (E6, K4),

wählen begründet mathematische Werkzeuge zur

Modellversuch zu einer "Überlandleitung" (aus CrNi-Draht) mit zwei "Trafo-Stationen", zur Untersuchung der Energieverluste bei unterschiedlich hohen Spannungen, Versuch (qualitativ und quantitativ) zur Demonstration der Selbstinduktion (registrierende Messung und Vergleich der Einund Ausschaltströme in parallelen Stromkreisen mit rein ohmscher bzw. mit induktiver Last), Versuche zur Demonstration der Wirkung von Wirbelströmen, diverse "Ringversuche"

Deduktive Herleitung des Terms für die Selbstinduktionsspannung einer langen Spule (ausgehend vom Induktionsgesetz), Interpretation des Vorzeichens mit Hilfe der Lenz'schen Regel Definition der Induktivität, messtechnische Erfassung und computerbasierte Auswertung von Ein- und Ausschaltvorgängen bei Spulen deduktive Herleitung der im magnetischen Feld einer Spule gespeicherten magnetischen Energie

Kontext: Physikalische Grundlagen der drahtlosen Nachrichtenübermittlung

<u>Leitfrage:</u> Wie können Nachrichten ohne Materietransport übermittelt werden? <u>Inhaltliche Schwerpunkte:</u> Elektromagnetische Schwingungen und Wellen

Kompetenzschwerpunkte: Schülerinnen und Schüler können

- (UF1) physikalische Phänomene und Zusammenhänge unter Verwendung von Theorien, übergeordneten Prinzipien / Gesetzen und Basiskonzepten beschreiben und erläutern, (UF2) zur Lösung physikalischer Probleme zielführend Definitionen, Konzepte sowie funktionale Beziehungen zwischen physikalischen Größen angemessen und begründet auswählen,
- (E4) Experimente mit komplexen Versuchsplänen und Versuchsaufbauten, auch historisch bedeutsame Experimente, mit Bezug auf ihre Zielsetzungen erläutern und diese zielbezogen unter Beachtung fachlicher Qualitätskriterien durchführen,
- (E5) Daten qualitativ und quantitativ im Hinblick auf Zusammenhänge, Regeln oder mathematisch zu formulierende Gesetzmäßigkeiten analysieren und Ergebnisse verallgemeinern,
- (E6) Modelle entwickeln sowie physikalisch-technische Prozesse mithilfe von theoretischen Modellen, mathematischen Modellierungen, Gedankenexperimenten und Simulationen erklären oder vorhersagen,
- (K3) physikalische Sachverhalte und Arbeitsergebnisse unter Verwendung situationsangemessener Medien und Darstellungsformen adressatengerecht präsentieren, (B1) fachliche, wirtschaftlich-politische und ethische Kriterien bei Bewertungen von physikalischen oder technischen Sachverhalten unterscheiden und begründet gewichten, (B4) begründet die Möglichkeiten und Grenzen physikalischer Problemlösungen und Sichtweisen bei innerfachlichen, naturwissenschaftlichen und gesellschaftlichen Fragestellungen bewerten.

Zeitbedarf: ca. 18 UE á 67,5 Min.

Inhalt	Kompetenzen	Experiment / Medium	Kommentar/didaktische Hinweise
	Die Schülerinnen und Schüler	zaperiment, mediam	nonnertary area area area area area area area a
Der	erläutern die Erzeugung elektromagnetischer	MW-Radio aus Aufbauteilen der	Zur Einbindung der Inhalte in den Kontext
elektromagnetische	Schwingungen, erstellen aussagekräftige	Elektriksammlung mit der	wird zunächst ein Mittelwellenradio aus
Schwingkreis – das	Diagramme und werten diese aus (E2, E4, E5, B1),	Möglichkeit, die modulierte	Aufbauteilen der Elektriksammlung
Basiselement der	treffen im Bereich Elektrik Entscheidungen für die	Trägerschwingung (z.B.	vorgestellt.
Nachrichtentechnik:	Auswahl von Messgeräten (Empfindlichkeit,	oszilloskopisch) zu registrieren,	Der Schwingkreis als zentrale
Elektromagnetische	Genauigkeit, Auflösung und Messrate) im Hinblick	einfache Resonanzversuche (auch aus	Funktionseinheit des MW-Radios: Es kann
Schwingungen im	auf eine vorgegebene Problemstellung (B1),	der Mechanik / Akustik),	leicht gezeigt werden, dass durch
RLC-Kreis,	erläutern qualitativ die bei einer ungedämpften		Veränderung von L bzw. C der Schwingkreis
Energieumwandlungs	elektromagnetischen Schwingung in der Spule und		so "abgestimmt" werden kann, dass (z.B.
prozesse im RLC-Kreis	am Kondensator ablaufenden physikalischen		oszilloskopisch) eine modulierte
	Prozesse (UF1, UF2),		Trägerschwingung registriert werden kann,
	beschreiben den Schwingvorgang im RLC-Kreis		also der Schwingkreis "von außen"
	qualitativ als Energieumwandlungsprozess und		angeregt wird.
	benennen wesentliche Ursachen für die Dämpfung		Die Analogie zu mechanischen
	(UF1, UF2, E5),		Resonanzversuchen wird aufgezeigt.
	wählen begründet mathematische Werkzeuge zur	RLC - Serienschwingkreis	Die zentrale Funktionseinheit
	Darstellung und Auswertung von Messwerten im	insbesondere mit registrierenden	"Schwingkreis" wird genauer untersucht.
	Bereich der Elektrik (auch computer-gestützte	Messverfahren und	Spannungen und Ströme im RCL – Kreis
	graphische Darstellungen, Linearisierungsverfahren,	computergestützten	werden zeitaufgelöst registriert, die
	Kurvenanpassungen), wenden diese an und	Auswerteverfahren,	Diagramme sind Grundlage für die
	bewerten die Güte der Messergebnisse (E5, B4),		qualitative Beschreibung der Vorgänge in
	entscheiden für Problemstellungen aus der Elektrik,	ggf. Meißner- oder Dreipunkt-	Spule und Kondensator.
	ob ein deduktives oder ein experimentelles	Rückkopplungsschaltung zur	Quantitativ wird nur die ungedämpfte
	Vorgehen sinnvoller ist (B4, UF2, E1),	Erzeugung / Demonstration	Schwingung beschrieben (inkl. der
		entdämpfter elektromagnetischer	Herleitung der Thomsonformel).
		Schwingungen	

problembezogen aus (UF2), leiten physikalische Gesetze aus geeigneten Definitionen und bekannten Gesetzen deduktiv her (E6, UF2).	sowie Möglichkeiten der Entdämpfung / Rückkopplung können kurz und rein qualitativ angesprochen werden.
Information und Energie: Entstehung und Ausbreitung elektromagnetischer Wellen, Energietransport und Informationsübertragung durch elektro-magnetische Wellen, Elektromagnetische Wellen, Energietransport und Informationsübertragung durch elektromagnetische Wellen, Elektromagnetische Wellen, Energietransport und Informationsübertragung durch elektromagnetische Wellen, Energietransport und Informationsübertragung durch elektromagnetische Wellen als räumlich und zeitlich periodischen Vorgang (UF1, E6), erläutern anhand schematischer Darstellungen Grundzüge der Nutzung elektromagnetischer Trägerwellen zur Übertragung von Informationen (K2, K3, E6). ermitteln auf der Grundlage von Brechungs-, Beugungs- und Interferenzerscheinungen (mit Lichtund Mikrowellen) die Wellenlängen und die Lichtgeschwindigkeit (E2, E4, E5). beschreiben die Phänomene Reflexion, Brechung, Beugung und Interferenz im Wellenmodell und begründen sie qualitativ mithilfe des Huygens'schen Prinzips (UF1, E6).	werden erarbeitet. Übergang vom Schwingkreis zum Hertz'schen Dipol durch Verkleinerung von L und C, Überlegungen zum "Ausbreitungsmechanismus" elektromagnetischer Wellen: Induktion, edien zur magneto- en Induktion, edien zur ulichung der Ausbreitung erromagnetischen Welle, werden erarbeitet. Übergang vom Schwingkreis zum Hertz'schen Dipol durch Verkleinerung von L und C, Überlegungen zum "Ausbreitungsmechanismus" elektromagnetischer Wellen: Induktion findet auch ohne Leiter ("Induktionsschleife") statt! (Z.B.) Versuch zur Demonstration des Magnetfeldes um stromdurchflossene Leiter, über die ein Kondensator aufgeladen wird.

entscheiden für Problemstellungen aus der Elektrik, ob ein deduktives oder ein experimentelles Vorgehen sinnvoller ist (B4, UF2, E1), leiten physikalische Gesetze aus geeigneten Definitionen und bekannten Gesetzen deduktiv her (E6, UF2),

beschreiben die Interferenz an Doppelspalt und Gitter im Wellenmodell und leiten die entsprechenden Terme für die Lage der jeweiligen Maxima n-ter Ordnung her (E6, UF1, UF2), wählen Definitionsgleichungen zusammengesetzter physikalischer Größen sowie physikalische Gesetze problembezogen aus (UF2), erstellen, bei Variation mehrerer Parameter, Tabellen und Diagramme zur Darstellung von Messwerten (K1, K3, UF3).

Visuelle Medien zur
Veranschaulichung der Ausbreitung
einer linearen (harmonischen) Welle,
auch Wellenmaschine zur Erinnerung
an mechanische Wellen,
entsprechende
Computersimulationen,
Wellenwanne
Mikrowellensender / -empfänger mit

Wellenwanne
Mikrowellensender / -empfänger mit
Gerätesatz für Beugungs-, Brechungsund Interferenzexperimente,
Interferenz-, Beugungs- und
Brechungsexperimente mit (Laser-)
Licht an Doppelspalt und Gitter
(quantitativ) —
sowie z.B. an Kanten, dünnen
Schichten,... (qualitativ)

Beugungs-, Brechungs- und Interferenzerscheinungen zum Nachweis des Wellencharakters elektromagnetischer Wellen,

Konkretisierte Unterrichtsvorhaben für die Qualifikationsphase 2 (Leistungskurs)

Inhaltsfeld: Quantenphysik

Kontext: Erforschung des Photons

Leitfrage: Besteht Licht doch aus Teilchen?

Inhaltliche Schwerpunkte: Licht und Elektronen als Quantenobjekte, Welle-Teilchen-

Dualismus, Quantenphysik und klassische Physik

Kompetenzschwerpunkte: Schülerinnen und Schüler können

(UF2) zur Lösung physikalischer Probleme zielführend Definitionen, Konzepte sowie funktionale Beziehungen zwischen physikalischen Größen angemessen und begründet auswählen,

(E6) Modelle entwickeln sowie physikalisch-technische Prozesse mithilfe von theoretischen Modellen, mathematischen Modellierungen, Gedankenexperimenten und Simulationen erklären oder vorhersagen,

(E7) naturwissenschaftliches Arbeiten reflektieren sowie Veränderungen im Weltbild und in Denk- und Arbeitsweisen in ihrer historischen und kulturellen Entwicklung darstellen

Zeitbedarf: ca. 6 UE á 67,5 Min.

Inhalt	Kompetenzen Die Schülerinnen und Schüler	Experiment / Medium	Kommentar/didaktische Hinweise
Lichtelektrischer Effekt	diskutieren und begründen das Versagen der klassischen Modelle bei der Deutung quantenphysikalischer Prozesse (K4, E6) legen am Beispiel des Photoeffekts und seiner Deutung dar, dass neue physikalische Experimente und Phänomene zur Veränderung des physikalischen Weltbildes bzw. zur Erweiterung oder Neubegründung physikalischer Theorien und Modelle führen können (E7),	Entladung einer positiv bzw. negativ geladenen (frisch geschmirgelten) Zinkplatte mithilfe des Lichts einer Hg-Dampf-Lampe (ohne und mit UV-absorbierender Glasscheibe)	Qualitative Demonstration des Photoeffekts
Teilcheneigen- schaften von Photonen Planck'sches Wirkungsquantum	erläutern die qualitativen Vorhersagen der klassischen Elektrodynamik zur Energie von Photoelektronen (bezogen auf die Frequenz und Intensität des Lichts) (UF2, E3), erläutern den Widerspruch der experimentellen Befunde zum Photoeffekt zur klassischen Physik und nutzen zur Erklärung die Einstein'sche Lichtquantenhypothese (E6, E1), diskutieren das Auftreten eines Paradigmenwechsels in der Physik am Beispiel der quantenmechanischen Beschreibung von Licht und Elektronen im Vergleich zur Beschreibung mit klassischen Modellen (B2, E7), beschreiben und erläutern Aufbau und Funktionsweise von komplexen Versuchsaufbauten (u.a. zur h-Bestimmung und zur Elektronenbeugung)	1. Versuch zur h-Bestimmung: Gegenspannungsmethode (Hg- Linien mit Cs-Diode) 2. Versuch zur h-Bestimmung: Mit Simulationsprogramm (in häuslicher Arbeit)	Spannungsbestimmung mithilfe Kondensatoraufladung erwähnen Wenn genügend Zeit zur Verfügung steht, kann an dieser Stelle auch der Compton-Effekt behandelt werden: Bedeutung der Anwendbarkeit der (mechanischen) Stoßgesetze hinsichtlich der Zuordnung eines Impulses für Photonen Keine detaillierte (vollständig relativistische) Rechnung im Unterricht notwendig, Rechnung
	(K3, K2), ermitteln aus den experimentellen Daten eines Versuchs zum Photoeffekt das Planck'sche Wirkungsquantum (E5, E6),		ggf. als Referat vorstellen lassen

Kontext: Röntgenstrahlung, Erforschung des Photons

<u>Leitfrage:</u> Was ist Röntgenstrahlung?

Inhaltliche Schwerpunkte: Licht und Elektronen als Quantenobjekte

Kompetenzschwerpunkte: Schülerinnen und Schüler können

(UF1) physikalische Phänomene und Zusammenhänge unter Verwendung von Theorien, übergeordneten Prinzipien / Gesetzen und Basiskonzepten beschreiben und erläutern, (E6) Modelle entwickeln sowie physikalisch-technische Prozesse mithilfe von theoretischen Modellen, mathematischen Modellierungen, Gedankenexperimenten und Simulationen erklären oder vorhersagen

Zeitbedarf: ca. 6 UE á 67,5 Min.

Inhalt	Kompetenzen	Experiment / Medium	Kommentar/didaktische Hinweise
Däntsansähus	Die Schülerinnen und Schüler	Däntgennähne den Cehul	Die Debendlung der Däntgenstrahlung
Röntgenröhre	beschreiben den Aufbau einer Röntgenröhre (UF1),	Röntgenröhre der Schul-	Die Behandlung der Röntgenstrahlung
Röntgenspektrum		röntgeneinrichtung	erscheint an dieser Stelle als "Einschub" in
		Sollte keine Röntgenröhre zur	die Reihe zur Quantenphysik sinnvoll,
		Verfügung stehen, kann mit	obwohl sie auch zu anderen Sachbereichen
		einem interaktiven	Querverbindungen hat und dort
		Bildschirmexperiment (IBE)	durchgeführt werden könnte (z.B. "Physik
		gearbeitet werden (z.B.	der Atomhülle")
		http://www.mackspace.de/unte	Zu diesem Zeitpunkt müssen kurze
		rricht/simulationen_physik/quan	Sachinformationen zum Aufbau der
		tenphysik/sv/roentgen.php	Atomhülle und den Energiezuständen der
			Hüllelektronen gegeben (recherchiert)
		oder	werden.
			Das IBE sollte für die häusliche Arbeit
		http://www.uni-	genutzt werden.
		due.de/physik/ap/iabe/roentgen	
		b10/roentgen b10 uebersicht.	
		html)	
Bragg'sche	erläutern die Bragg-Reflexion an einem Einkristall und	Aufnahme eines Röntgen-	Die Bragg'sche Reflexionsbedingung basiert
Reflexionsbedingung	leiten die Bragg'sche Reflexionsbedingung her (E6),	spektrums (Winkel-Inten-	auf Welleninterpretation, die Registrierung
		sitätsdiagramm vs. Wellen-	der Röntgenstrahlung mithilfe des Detektors
		längen-Intensitätsdiagramm)	hat den Teilchenaspekt im Vordergrund
Planck'sches	deuten die Entstehung der kurzwelligen		Eine zweite Bestimmungsmethode für das
Wirkungsquantum	Röntgenstrahlung als Umkehrung des Photoeffekts (E6),		Planck'sche Wirkungsquantum
Strukturanalyse			Schülerreferate mit Präsentationen zur
mithilfe der			Debye-Scherrer-Methode
Drehkristallmethode			,
Strukturanalyse nach			
Debye-Scherrer			

Röntgenröhre in	führen Recherchen zu komplexeren Fragestellungen der	Film / Video / Foto	Schülerreferate mit Präsentationen anhand
Medizin und Technik	Quantenphysik durch und präsentieren die Ergebnisse	Schülervorträge auf fachlich	Literatur- und Internetrecherchen
	(K2, K3),	angemessenem Niveau (mit	Ggf. Exkursion zum Röntgenmuseum in
		adäquaten fachsprachlichen	Lennep
		Formulierungen)	Ggf. Exkursion zur radiologischen Abteilung
			des Krankenhauses (die aber auch in
			Rahmen der Kernphysik (s. dort:
			"Biologische Wirkung ionisierender
			Strahlung") durchgeführt werden kann)

Kontext: Erforschung des Elektrons

<u>Leitfrage:</u> Kann das Verhalten von Elektronen und Photo-nen durch ein gemeinsames Modell beschrieben werden? <u>Inhaltliche Schwerpunkte:</u> Welle-Teilchen-Dualismus

Kompetenzschwerpunkte: Schülerinnen und Schüler können

(UF1) physikalische Phänomene und Zusammenhänge unter Verwendung von Theorien, übergeordneten Prinzipien / Gesetzen und Basiskonzepten beschreiben und erläutern,

(K3) physikalische Sachverhalte und Arbeitsergebnisse unter Verwendung situationsangemessener Medien und Darstellungsformen adressatengerecht präsentieren

Zeitbedarf: ca. 4 UE á 67,5 Min.

Inhalt	Kompetenzen Die Schülerinnen und Schüler	Experiment / Medium	Kommentar/didaktische Hinweise
Wellencharakter von Elektronen	interpretieren experimentelle Beobachtungen an der Elektronenbeugungsröhre mit den Welleneigenschaften von Elektronen (E1, E5, E6),	Qualitative Demonstrationen mit der Elektronenbeugungsröhre Qualitative Demonstrationen mithilfe RCL (Uni Kaiserslautern: http://rcl-munich.informatik.unibw-muenchen.de/)	Hinweise auf erlaubte nichtrelativistische Betrachtung (bei der verwendeten Elektronen- beugungsröhre der Schule)
Streuung und Beugung von Elektronen De Broglie- Hypothese	beschreiben und erläutern Aufbau und Funktionsweise von komplexen Versuchsaufbauten (u.a. zur h-Bestimmung und zur Elektronenbeugung) (K3, K2), erklären die de Broglie-Hypothese am Beispiel von Elektronen (UF1),	Quantitative Messung mit der Elektronenbeugungsröhre	Herausstellen der Bedeutung der Bragg'schen Reflexionsbedingung für (Röntgen-) Photonen wie für Elektronen mit Blick auf den Wellenaspekt von Quantenobjekten Dabei Betonung der herausragenden Bedeutung der de Broglie-Gleichung für die quantitative Beschreibung der (lichtschnellen und nicht lichtschneller) Quantenobjekte

Kontext: Die Welt kleinster Dimensionen – Mikroobjekte und Quantentheorie

<u>Leitfrage:</u> Was ist anders im Mikrokosmos?

<u>Inhaltliche Schwerpunkte:</u> Welle-Teilchen-Dualismus und Wahrscheinlichkeitsinterpretation, Quantenphysik und klassische Physik

Kompetenzschwerpunkte: Schülerinnen und Schüler können

(UF1) physikalische Phänomene und Zusammenhänge unter Verwendung von Theorien, übergeordneten Prinzipien / Gesetzen und Basiskonzepten beschreiben und erläutern, (E7) naturwissenschaftliches Arbeiten reflektieren sowie Veränderungen im Weltbild und in Denk- und Arbeitsweisen in ihrer historischen und kulturellen Entwicklung darstellen.

Zeitbedarf: ca. 6 UIE á 67,5 Min.

Inhalt	Kompetenzen Die Schülerinnen und Schüler	Experiment / Medium	Kommentar/didaktische Hinweise
linearer Potentialtopf Energiewerte im line- aren Potentialtopf	deuten das Quadrat der Wellenfunktion qualitativ als Maß für die Aufenthaltswahrscheinlichkeit von Elektronen (UF1, UF4), ermitteln die Wellenlänge und die Energiewerte von im linearen Potentialtopf gebundenen Elektronen (UF2, E6).		Auf die Anwendbarkeit des Potentialtopf- Modells bei Farbstoffmolekülen wird hingewiesen. Die Anwendbarkeit des (mechanischen) Modells der stehenden Welle kann insofern bestätigt werden, als dass die für die stehenden Wellen sich ergebende DGI mit derjenigen der (zeitunabhängigen) Schrödinger-DGI strukturell übereinstimmt. Ein Ausblick auf die Schrödinger-Gleichung genügt.
Wellenfunktion und Aufenthalts- wahrscheinlichkeit	erläutern die Aufhebung des Welle-Teilchen-Dualismus durch die Wahrscheinlichkeitsinterpretation (UF1, UF4), erläutern die Bedeutung von Gedankenexperimenten und Simulationsprogrammen zur Erkenntnisgewinnung bei der Untersuchung von Quantenobjekten (E6, E7). erläutern bei Quantenobjekten das Auftreten oder Verschwinden eines Interferenzmusters mit dem Begriff der Komplementarität (UF1, E3), diskutieren das Auftreten eines Paradigmenwechsels in der Physik am Beispiel der quantenmechanischen Beschreibung von Licht und Elektronen im Vergleich zur Beschreibung mit klassischen Modellen (B2, E7), stellen anhand geeigneter Phänomene dar, wann Licht durch ein Wellenmodell bzw. ein Teilchenmodell beschrieben werden kann (UF1, K3, B1),	Demonstration des Durchgangs eines einzelnen Quantenobjekts durch einen Doppelspalt mithilfe eines Simula- tionsprogramms und mithilfe von Videos	

Heisenberg´sche	erläutern die Aussagen und die Konsequenzen der	Die Heisenberg'sche Unschärferelation
Unschärferelation	Heisenberg´schen Unschärferelation (Ort-Impuls,	kann (aus fachlicher Sicht) plausibel
	Energie-Zeit) an Beispielen (UF1, K3),	gemacht werden aufgrund des sich aus der
	bewerten den Einfluss der Quantenphysik im Hinblick auf	Interferenzbedingung ergebenden
	Veränderungen des Weltbildes und auf Grundannahmen	Querimpulses eines Quantenobjekts, wenn
	zur physikalischen Erkenntnis (B4, E7).	dieses einen Spalt passiert.

Inhaltsfeld: Atom-, Kern- und Elementarteilchenphysik

Kontext: Geschichte der Atommodelle, Lichtquellen und ihr Licht

Leitfrage: Wie gewinnt man Informationen zum Aufbau der Materie?

Inhaltliche Schwerpunkte: Atomaufbau

Kompetenzschwerpunkte: Schülerinnen und Schüler können

(UF1) physikalische Phänomene und Zusammenhänge unter Verwendung von Theorien, übergeordneten Prinzipien / Gesetzen und Basiskonzepten beschreiben und erläutern, (E5) Daten qualitativ und quantitativ im Hinblick auf Zusammenhänge, Regeln oder mathematisch zu formulierende Gesetzmäßigkeiten analysieren und Ergebnisse verallgemeinern,

(E7) naturwissenschaftliches Arbeiten reflektieren sowie Veränderungen im Weltbild und in Denk- und Arbeitsweisen in ihrer historischen und kulturellen Entwicklung darstellen.

Inhalt	Kompetenzen Die Schülerinnen und Schüler	Experiment / Medium	Kommentar/didaktische Hinweise
Atomaufbau: Kern-Hülle-Modell	geben wesentliche Schritte in der historischen Entwicklung der Atommodelle bis hin zum Kern- Hülle-Modell wieder (UF1),	Recherche in Literatur und Internet	Diverse Atommodelle (Antike bis Anfang 20. Jhd.)
		Rutherford'scher Streuversuch	Per Arbeitsblatt oder Applet (z.B http://www.schulphysik.de/java/physlet/appl ets/rutherford.html)
Energiequantelung der Hüllelektronen	erklären Linienspektren in Emission und Absorption sowie den Franck-Hertz-Versuch mit der Energiequantelung in der Atomhülle (E5),	Linienspektren, Franck-Hertz- Versuch	Linienspektren deuten auf diskrete Energien hin
Linienspektren	stellen die Bedeutung des Franck-Hertz-Versuchs und der Experimente zu Linienspektren in Bezug auf die historische Bedeutung des Bohr'schen Atommodells dar (E7).	Durchstrahlung einer Na-Flamme mit Na- und Hg-Licht (Schattenbildung), Linienspektren von H	Demonstrationsversuch, Arbeitsblatt
Bohr'sche Postulate	formulieren geeignete Kriterien zur Beurteilung des Bohr'schen Atommodells aus der Perspektive der klassischen und der Quantenphysik (B1, B4),	Literatur, Arbeitsblatt	Berechnung der Energieniveaus, Bohr'scher Radius

Kontext: Physik in der Medizin (Bildgebende Verfahren, Radiologie)

<u>Leitfrage:</u> Wie nutzt man Strahlung in der Medizin?

<u>Inhaltliche Schwerpunkte:</u> Ionisierende Strahlung, Radioaktiver Zerfall

Kompetenzschwerpunkte: Schülerinnen und Schüler können

(UF3) physikalische Sachverhalte und Erkenntnisse nach fachlichen Kriterien ordnen und strukturieren,

(E6) Modelle entwickeln sowie physikalisch-technische Prozesse mithilfe von theoretischen Modellen, mathematischen Modellierungen, Gedankenexperimenten und Simulationen erklären oder vorhersagen,

(UF4) Zusammenhänge zwischen unterschiedlichen natürlichen bzw. technischen Vorgängen auf der Grundlage eines vernetzten physikalischen Wissens erschließen und aufzeigen.

Zeitbedarf: ca. 9 UE á 67,5 Min.

Inhalt	Kompetenzen Die Schülerinnen und Schüler	Experiment / Medium	Kommentar/didaktische Hinweise
Ionisierende	benennen Geiger-Müller-Zählrohr und	Geiger-Müller-Zählrohr,	Ggf. Schülermessungen mit Zählrohren
Strahlung:	Halbleiterdetektor als experimentelle	Arbeitsblatt	(Alltagsgegenstände, Nulleffekt, Präparate etc.)
Detektoren	Nachweismöglichkeiten für ionisierende Strahlung	Nebelkammer	Demonstration der Nebelkammer, ggf.
	und unterscheiden diese hinsichtlich ihrer		Schülerbausatz
	Möglichkeiten zur Messung von Energien (E6),		Material zu Halbleiterdetektoren
Strahlungsarten	erklären die Ablenkbarkeit von ionisierenden	Absorption von α-, β-, γ-	Ggf. Absorption und Ablenkung in
	Strahlen in elektrischen und magnetischen Feldern	Strahlung	Schülerexperimenten
	sowie die Ionisierungsfähigkeit und	Ablenkung von β-Strahlen im	
	Durchdringungsfähigkeit mit ihren Eigenschaften	Magnetfeld	
	(UF3),	Literatur (zur Röntgen- ,	
	erklären die Entstehung des Bremsspektrums und	Neutronen- und	
	des charakteristischen Spektrums der	Schwerionenstrahlung)	
	Röntgenstrahlung (UF1),		
	benennen Geiger-Müller-Zählrohr und		
	Halbleiterdetektor als experimentelle		
	Nachweismöglichkeiten für ionisierende Strahlung		
	und unterscheiden diese hinsichtlich ihrer		
	Möglichkeiten zur Messung von Energien (E6),		
	erläutern das Absorptionsgesetz für Gamma-		
	Strahlung, auch für verschiedene Energien (UF3),		
Dosimetrie	erläutern in allgemein verständlicher Form	Video zur Dosimetrie	
	bedeutsame Größen der Dosimetrie (Aktivität,	Auswertung von Berichten über	
	Energie- und Äquivalentdosis) auch hinsichtlich der	Unfälle im kerntechnischen	
	Vorschriften zum Strahlenschutz (K3),	Bereich	
Bildgebende	stellen die physikalischen Grundlagen von	Schülervorträge auf fachlich	Nutzung von Strahlung zur Diagnose und zur
Verfahren	Röntgenaufnahmen und Szintigrammen als	angemessenem Niveau (mit	Therapie bei Krankheiten des Menschen (von
	bildgebende Verfahren dar (UF4),	adäquaten fachsprachlichen	Lebewesen) sowie zur Kontrolle bei technischen
	beurteilen Nutzen und Risiken ionisierender	Formulierungen)	Anlagen
	Strahlung unter verschiedenen Aspekten (B4),	Ggf. Exkursion zur radiologischen	
		Abteilung des Krankenhauses	

Kontext: (Erdgeschichtliche) Altersbestimmungen

<u>Leitfrage:</u> Wie funktioniert die 14C-Methode? <u>Inhaltliche Schwerpunkte:</u> Radioaktiver Zerfall

Kompetenzschwerpunkte: Schülerinnen und Schüler können

(UF2) zur Lösung physikalischer Probleme zielführend Definitionen, Konzepte sowie funktionale Beziehungen zwischen physikalischen Größen angemessen und begründet auswählen,

(E5) Daten qualitativ und quantitativ im Hinblick auf Zusammenhänge, Regeln oder mathematisch zu formulierende Gesetzmäßigkeiten analysieren und Ergebnisse verallgemeinern

Zeitbedarf: 6 UE á 67,5 Min.

Inhalt	Kompetenzen Die Schülerinnen und Schüler	Experiment / Medium	Kommentar/didaktische Hinweise
Radioaktiver Zerfall: Kernkräfte	benennen Protonen und Neutronen als Kernbausteine, identifizieren Isotope und erläutern den Aufbau einer Nuklidkarte (UF1),	Ausschnitt aus Nuklidkarte	Aufbauend auf Physik- und Chemieunterreicht der S I
Zerfallsprozesse	identifizieren natürliche Zerfallsreihen sowie künstlich herbeigeführte Kernumwandlungsprozesse mithilfe der Nuklidkarte (UF2),	Elektronische Nuklidkarte	Umgang mit einer Nuklidkarte
	entwickeln Experimente zur Bestimmung der Halbwertszeit radioaktiver Substanzen (E4, E5), nutzen Hilfsmittel, um bei radioaktiven Zerfällen den funktionalen Zusammenhang zwischen Zeit und Abnahme der Stoffmenge sowie der Aktivität radioaktiver Substanzen zu ermitteln (K3), leiten das Gesetz für den radioaktiven Zerfall einschließlich eines Terms für die Halbwertszeit her (E6),	Radon-Messung im Schulkeller (Zentralabitur 2008) Tabellenkalkulation Ggf. CAS	Siehe http://www.physik-box.de/radon/radonseite.html Ggf. Auswertung mit Tabellenkalkulation durch Schüler Linearisierung, Quotientenmethode, Halbwertszeitabschätzung, ggf. logarithmische Auftragung Ansatz analog zur quantitativen Beschreibung von Kondensatorentladungen
Altersbestimmung	bestimmen mithilfe des Zerfallsgesetzes das Alter von Materialien mit der C14-Methode (UF2),	Arbeitsblatt	Ggf. Uran-Blei-Datierung

Kontext: Energiegewinnung durch nukleare Prozesse

Leitfrage: Wie funktioniert ein Kernkraftwerk?

Inhaltliche Schwerpunkte: Kernspaltung und Kernfusion, Ionisierende Strahlung

Kompetenzschwerpunkte: Schülerinnen und Schüler können

(B1) fachliche, wirtschaftlich-politische und ethische Kriterien bei Bewertungen von physikalischen oder technischen Sachverhalten unterscheiden und begründet gewichten, (UF4) Zusammenhänge zwischen unterschiedlichen natürlichen bzw. technischen Vorgängen auf der Grundlage eines vernetzten physikalischen Wissens erschließen und aufzeigen.

Zeitbedarf: ca. 6 UE á 67,5 Min.

Inhalt	Kompetenzen Die Schülerinnen und Schüler	Experiment / Medium	Kommentar/didaktische Hinweise
Kernspaltung und Kernfusion: Massendefekt, Äquivalenz von Masse und Energie, Bindungsenergie	bewerten den Massendefekt hinsichtlich seiner Bedeutung für die Gewinnung von Energie (B1), bewerten an ausgewählten Beispielen Rollen und Beiträge von Physikerinnen und Physikern zu Erkenntnissen in der Kern- und Elementarteilchenphysik (B1),	Video zu Kernwaffenexplosion	Z.B. YouTube
Kettenreaktion	erläutern die Entstehung einer Kettenreaktion als relevantes Merkmal für einen selbstablaufenden Prozess im Nuklearbereich (E6), beurteilen Nutzen und Risiken von Kernspaltung und Kernfusion anhand verschiedener Kriterien (B4),	Mausefallenmodell, Video, Applet	Videos zum Mausefallenmodell sind im Netz (z.B. bei YouTube) verfügbar
Kernspaltung, Kernfusion	beschreiben Kernspaltung und Kernfusion unter Berücksichtigung von Bindungsenergien (quantitativ) und Kernkräften (qualitativ) (UF4), hinterfragen Darstellungen in Medien hinsichtlich technischer und sicherheitsrelevanter Aspekte der Energiegewinnung durch Spaltung und Fusion (B3, K4).	Diagramm B/A gegen A, Tabellenwerk, ggf. Applet Recherche in Literatur und Internet Schülerdiskussion, ggf. Fish Bowl, Amerikanische Debatte, Pro- Kontra-Diskussion	Z.B. http://www.leifiphysik.de Siehe http://www.sn.schule.de/~sud/methodenkom pendium/module/2/1.htm

Kontext: Forschung am CERN und DESY – Elementarteilchen und ihre fundamentalen Wechselwirkungen

<u>Leitfrage:</u> Was sind die kleinsten Bausteine der Materie? <u>Inhaltliche Schwerpunkte:</u> Elementarteilchen und ihre Wechselwirkungen

Kompetenzschwerpunkte: Schülerinnen und Schüler können

(UF3) physikalische Sachverhalte und Erkenntnisse nach fachlichen Kriterien ordnen und strukturieren,

(K2) zu physikalischen Fragestellungen relevante Informationen und Daten in verschiedenen Quellen, auch in ausgewählten wissenschaftlichen Publikationen, recherchieren, auswerten und vergleichend beurteilen

Zeitbedarf: ca. 7 UE á 67,5 Min.

Inhalt	Kompetenzen Die Schülerinnen und Schüler	Experiment / Medium	Kommentar/didaktische Hinweise
Kernbausteine und Elementarteilchen	systematisieren mithilfe des heutigen Standardmodells den Aufbau der Kernbausteine und erklären mit ihm Phänomene der Kernphysik (UF3),	Existenz von Quarks (Video) Internet (CERN / DESY)	Da in der Schule kaum Experimente zum Thema "Elementarteilchenphysik" vorhanden sind, sollen besonders Rechercheaufgaben und Präsentationen im Unterricht genutzt werden. Internet: http://project-physicsteaching/german/ Ggf. Schülerreferate
Kernkräfte Austauschteilchen der fundamentalen Wechselwirkungen	vergleichen das Modell der Austauschteilchen im Bereich der Elementarteilchen mit dem Modell des Feldes (Vermittlung, Stärke und Reichweite der Wechselwirkungskräfte) (E6). erklären an Beispielen Teilchenumwandlungen im Standardmodell mithilfe der Heisenberg'schen Unschärferelation und der Energie-Masse- Äquivalenz (UF1).	Darstellung der Wechselwirkung mit Feynman-Graphen (anhand von Literatur)	Besonderer Hinweis auf andere Sichtweise der "Kraftübertragung": Feldbegriff vs. Austauschteilchen Die Bedeutung der Gleichung $E=mc^2$ (den SuS bekannt aus Relativitätstheorie) in Verbindung mit der Heisenberg'schen Unschärferelation in der Form $\Delta E \cdot \Delta t \geq h$ (den SuS bekannt aus Elementen der Quantenphysik) für die Möglichkeit des kurzzeitigen Entstehens von Austauschteilchen ist herauszustellen.
Aktuelle Forschung und offene Fragen der Elementarteilchenphysik (z.B. Higgs-Teilchen, Dunkle Materie, Dunkle Energie, Asymmetrie zwischen Materie und Antimaterie,)	recherchieren in Fachzeitschriften, Zeitungsartikeln bzw. Veröffentlichungen von Forschungseinrichtungen zu ausgewählten aktuellen Entwicklungen in der Elementarteilchenphysik (K2),	Literatur und Recherche im Internet "CERN-Rap": http://www.youtube.com/watch? v=7VshToyoGl8	Hier muss fortlaufend berücksichtigt werden, welches der aktuelle Stand der Forschung in der Elementarteilchenphysik ist (derzeit: Higgs-Teilchen, Dunkle Materie, Dunkle Energie, Asymmetrie zwischen Materie und Antimaterie,) Der CERN-Rap gibt eine für Schülerinnen und Schüler motivierend dargestellte Übersicht über die aktuelle Forschung im Bereich der Elementarteilchenphysik

Hinweis: In diesem Bereich sind i. d. R. keine bzw. nur in Ausnahmefällen Realexperimente für Schulen möglich. Es sollte daher insbesondere die Möglichkeit genutzt werden, auf geeignete Internetmaterialien zurück zu greifen. Nachfolgend sind einige geeignet erscheinende Internetquellen aufgelistet. Internet-Materialien (Letzter Aufruf Jan 2012):

- CERN-Film zum Standardmodell (sehr übersichtlich):
 http://project-physicsteaching.web.cern.ch/project-physicsteaching/german/kurzvideos/film6.wmv
 Weiter Filme zum Standardmodell im netz verfügbar (z.B. bei YouTube)
- Einführung in Teilchenphysik (DESY):
 http://teilchenphysik.desy.de/
 http://kworkquark.desy.de/1/index.html
- Übungen und Erklärungen zu Ereignisidentifikation (umfangreiche CERN-Internetseite zum Analysieren von (Original-) Eventdisplays) am Computer:
 - http://kjende.web.cern.ch/kjende/de/wpath.htm
- Ausgezeichnete Unterrichtsmaterialien des CERN zur Teilchenphysik:
 http://project-physicsteaching.web.cern.ch/project-physicsteaching/german/
- Übungen zur Teilchenphysik in der Realität:
 - http://physicsmasterclasses.org/neu/
 - http://www.teilchenwelt.de/
- Naturphänomene und Anregungen für den Physikunterricht:
 - http://www.solstice.de
- ... und vieles mehr:
 - http://www.teilchenwelt.de/material/materialien-zur-teilchenphysik/

Grundsätze der fachmethodischen und fachdidaktischen Arbeit im Physikunterricht der gymnasialen Oberstufe

In Absprache mit der Lehrerkonferenz sowie unter Berücksichtigung des Schulprogramms hat die Fachkonferenz Physik die folgenden fachmethodischen und fachdidaktischen Grundsätze beschlossen. Die Grundsätze 1 bis 14 beziehen sich auf fachübergreifende Aspekte, die Grundsätze 15 bis 26 sind fachspezifisch angelegt.

Überfachliche Grundsätze:

- 1.) Geeignete Problemstellungen zeichnen die Ziele des Unterrichts vor und bestimmen die Struktur der Lernprozesse.
- 2.) Inhalt und Anforderungsniveau des Unterrichts entsprechen dem Leistungsvermögen der Schülerinnen und Schüler.
- 3.) Die Unterrichtsgestaltung ist auf die Ziele und Inhalte abgestimmt.
- 4.) Medien und Arbeitsmittel sind lernernah gewählt.
- 5.) Die Schülerinnen und Schüler erreichen einen Lernzuwachs.
- 6.) Der Unterricht fördert und fordert eine aktive Teilnahme der Lernenden.
- 7.) Der Unterricht fördert die Zusammenarbeit zwischen den Lernenden und bietet ihnen Möglichkeiten zu eigenen Lösungen.
- 8.) Der Unterricht berücksichtigt die individuellen Lernwege der einzelnen Schülerinnen und Schüler.
- 9.) Die Lernenden erhalten Gelegenheit zu selbstständiger Arbeit und werden dabei unterstützt.
- 10.) Der Unterricht f\u00f6rdert strukturierte und funktionale Einzel-, Partner- bzw. Gruppenarbeit sowie Arbeit in kooperativen Lernformen.
- 11.) Der Unterricht fördert strukturierte und funktionale Arbeit im Plenum.
- 12.) Die Lernumgebung ist vorbereitet; der Ordnungsrahmen wird eingehalten.
- 13.) Die Lehr- und Lernzeit wird intensiv für Unterrichtszwecke genutzt.
- 14.) Es herrscht ein positives pädagogisches Klima im Unterricht.

Fachliche Grundsätze:

- 15.) Der Physikunterricht ist problemorientiert und Kontexten ausgerichtet.
- 16.) Der Physikunterricht ist kognitiv aktivierend und verständnisfördernd.
- 17.) Der Physikunterricht unterstützt durch seine experimentelle Ausrichtung Lernprozesse bei Schülerinnen und Schülern.
- 18.) Der Physikunterricht knüpft an die Vorerfahrungen und das Vorwissen der Lernenden an.
- 19.) Der Physikunterricht stärkt über entsprechende Arbeitsformen kommunikative Kompetenzen.
- 20.) Der Physikunterricht bietet nach experimentellen oder deduktiven Erarbeitungsphasen immer auch Phasen der Reflexion, in denen der Prozess der Erkenntnisgewinnung bewusst gemacht wird.

- 21.) Der Physikunterricht fördert das Einbringen individueller Lösungsideen und den Umgang mit unterschiedlichen Ansätzen. Dazu gehört auch eine positive Fehlerkultur.
- 22.) Im Physikunterricht wird auf eine angemessene Fachsprache und die Kenntnis grundlegender Formeln geachtet. Schülerinnen und Schüler werden zu regelmäßiger, sorgfältiger und selbstständiger Dokumentation der erarbeiteten Unterrichtsinhalte angehalten.
- 23.) Der Physikunterricht ist in seinen Anforderungen und im Hinblick auf die zu erreichenden Kompetenzen und deren Teilziele für die Schülerinnen und Schüler transparent.
- 24.) Der Physikunterricht bietet immer wieder auch Phasen der Übung und des Transfers auf neue Aufgaben und Problemstellungen.
- 25.) Der Physikunterricht bietet die Gelegenheit zum regelmäßigen wiederholenden Üben sowie zu selbstständigem Aufarbeiten von Unterrichtsinhalten.
- 26.) Im Physikunterricht wird ein GTR oder ein CAS verwendet. Die Messwertauswertung kann auf diese Weise oder per PC erfolgen.

Grundsätze der Leistungsbewertung und Leistungsrückmeldung im Fach Physik

Auf der Grundlage von § 48 SchulG, § 13 APO-GOSt sowie Kapitel 3 des Kernlehrplans Physik hat die Fachkonferenz im Einklang mit dem entsprechenden schulbezogenen Konzept die nachfolgenden Grundsätze zur Leistungsbewertung und Leistungsrückmeldung beschlossen. Die nachfolgenden Absprachen stellen die Minimalanforderungen an das lerngruppenübergreifende gemeinsame Handeln der Fachgruppenmitglieder dar. Bezogen auf die einzelne Lerngruppe kommen ergänzend weitere der in den Folgeabschnitten genannten Instrumente der Leistungsüberprüfung zum Einsatz.

Überprüfungsformen

In Kapitel 3 des KLP Physik Lehrplan werden Überprüfungsformen angegeben, die Möglichkeiten bieten, Leistungen im Bereich der "sonstigen Mitarbeit" oder den Klausuren zu überprüfen. Um abzusichern, dass am Ende der Qualifikationsphase von den Schülerinnen und Schülern alle geforderten Kompetenzen erreicht werden, sind alle Überprüfungsformen notwendig. Besonderes Gewicht wird im Grundkurs auf experimentelle Aufgaben und Aufgaben zur Datenanalyse gelegt.

Lern- und Leistungssituationen

In **Lernsituationen** ist das Ziel der Kompetenzerwerb. Fehler und Umwege dienen den Schülerinnen und Schülern als Erkenntnismittel, den Lehrkräften geben sie Hinweise für die weitere Unterrichtsplanung. Das Erkennen von Fehlern und der konstruktiv-produktive Umgang mit ihnen sind ein wesentlicher Teil des Lernprozesses.

Bei **Leistungs- und Überprüfungssituationen** steht dagegen der Nachweis der Verfügbarkeit der erwarteten bzw. erworbenen Kompetenzen im Vordergrund.

Beurteilungsbereich Sonstige Mitarbeit

Folgende Aspekte können bei der Leistungsbewertung der sonstigen Mitarbeit eine Rolle spielen (die Liste ist nicht abschließend):

- Sicherheit, Eigenständigkeit und Kreativität beim Anwenden fachspezifischer Methoden und Arbeitsweisen
- Verständlichkeit und Präzision beim zusammenfassenden Darstellen und Erläutern von Lösungen einer Einzel-, Partner-, Gruppenarbeit oder einer anderen Sozialform sowie konstruktive Mitarbeit bei dieser Arbeit
- Klarheit und Richtigkeit beim Veranschaulichen, Zusammenfassen und Beschreiben physikalischer Sachverhalte
- sichere Verfügbarkeit physikalischen Grundwissens (z. B. physikalische Größen, deren Einheiten, Formeln, fachmethodische Verfahren)
- situationsgerechtes Anwenden geübter Fertigkeiten
- angemessenes Verwenden der physikalischen Fachsprache
- konstruktives Umgehen mit Fehlern
- fachlich sinnvoller, sicherheitsbewusster und zielgerichteter Umgang mit Experimentalmedien
- fachlich sinnvoller und zielgerichteter Umgang mit Modellen, Hilfsmitteln und Simulationen
- zielgerichtetes Beschaffen von Informationen
- Erstellen von nutzbaren Unterrichtsdokumentationen, ggf. Portfolio
- Klarheit, Strukturiertheit, Fokussierung, Zielbezogenheit und Adressatengerechtigkeit von Präsentationen, auch mediengestützt
- sachgerechte Kommunikationsfähigkeit in Unterrichtsgesprächen und Kleingruppenarbeiten
- Einbringen kreativer Ideen
- fachliche Richtigkeit bei kurzen, auf die Inhalte weniger vorangegangener Stunden beschränkten schriftlichen Überprüfungen

Beurteilungsbereich Klausuren

Verbindliche Absprache:

Die Aufgaben für Klausuren in parallelen Kursen werden im Vorfeld abgesprochen und nach Möglichkeit gemeinsam gestellt.

Für Aufgabenstellungen mit experimentellem Anteil gelten die Regelungen, die in Kapitel 3 des KLP formuliert sind.

Dauer und Anzahl richten sich nach den Angaben der APO-GOSt.

Einführungsphase:

1 Klausur im ersten Halbjahr (90 Minuten), im zweiten Halbjahr werden 2 Klausuren (je 90 Minuten) geschrieben.

Qualifikationsphase 1:

2 Klausuren pro Halbjahr (je 135 Minuten im GK und je 180 Minuten im LK), wobei in einem Fach die letzte Klausur im 2. Halbjahr durch 1 Facharbeit ersetzt werden kann bzw. muss.

Qualifikationsphase 2.1:

2 Klausuren (je 135 Minuten im GK und je 180 Minuten im LK)

Qualifikationsphase 2.2:

1 Klausur, die – was den formalen Rahmen angeht – unter Abiturbedingungen geschrieben wird.

In der Qualifikationsphase werden die Notenpunkte durch äquidistante Unterteilung der Notenbereiche (mit Ausnahme des Bereichs ungenügend) erreicht.

Die Leistungsbewertung in den **Klausuren** wird mit Blick auf die schriftliche Abiturprüfung mit Hilfe eines Kriterienrasters zu den Teilleistungen durchgeführt. Dieses Kriterienraster wird den korrigierten Klausuren beigefügt und den Schülerinnen und Schüler auf diese Weise transparent gemacht.

Die Zuordnung der Hilfspunkte zu den Notenstufen orientiert sich in der Qualifikationsphase am Zuordnungsschema des Zentralabiturs. Die Note ausreichend soll bei Erreichen von ca. 50 % der Hilfspunkte erteilt werden. Von dem Zuordnungsschema kann abgewichen werden, wenn sich z.B. besonders originelle Teillösungen nicht durch Hilfspunkte gemäß den Kriterien des Erwartungshorizonts abbilden lassen oder eine Abwertung wegen besonders schwacher Darstellung angemessen erscheint.

Grundsätze der Leistungsrückmeldung und Beratung

Für Präsentationen, Arbeitsprotokolle, Dokumentationen und andere **Lernprodukte der sonstigen Mitarbeit** erfolgt eine Leistungsrückmeldung, bei der inhalts- und darstellungsbezogene Kriterien angesprochen werden. Hier werden zentrale Stärken als auch Optimierungsperspektiven für jede Schülerin bzw. jeden Schüler hervorgehoben.

Die Leistungsrückmeldungen bezogen auf die **mündliche Mitarbeit** erfolgen auf Nachfrage der Schülerinnen und Schüler außerhalb der Unterrichtszeit, spätestens aber in Form von mündlichem Quartalsfeedback oder Eltern-/Schülersprechtagen. Auch hier erfolgt eine individuelle Beratung im Hinblick auf Stärken und Verbesserungsperspektiven.

Mündliche Abiturprüfungen

Auch für das mündliche Abitur (im 4. Fach oder bei Abweichungs- bzw. Bestehensprüfungen im 1. bis 3. Fach) wird ein Kriterienraster für den ersten und zweiten Prüfungsteil vorgelegt, aus dem auch deutlich wird, wann eine gute oder ausreichende Leistung erreicht wird.